首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The permeation behaviour of buffalo-milk Cheddar cheese whey during ultrafiltration was studied. Buffalo-milk Cheddar cheese whey was adjusted to various pH levels ranging from 3.0 to 7.2 and ultrafiltration was carried out at 50° C to a level of 95% volume reduction by maintaining 1.75 and 0.50 bar inlet and outlet pressures, respectively. It was observed that the retentate had a minimum ash content of 3.17 % on a dry matter basis at pH 3.0 as against 6.23% when ultrafiltered at pH 7.2. As the pH was decreased from 7.2 to 3.0, the ash content of the retentate was drastically reduced. The calcium and phosphorus content of the retentate also varied significantly with change in pH, being minimal at pH 3.0 and increasing significantly with increase in pH of the whey. The yield of protein and lactose in the final retentate also varied with the pH of the whey. The permeate had a total solids content ranging from 5.65 to 5.78%. The maximal ash content of 0.59% was observed in the permeate when ultrafiltered at pH 3.0. As the whey pH increased, the ash content in the permeate decreased significantly. The total protein content of the permeate ranged from 0.18 to 0.23%. Most of the protein was observed to be non-protein nitrogen. Polyacrylamide gel electrophoresis showed the presence of-lactalbumin and traces of-lactoglobulin in the permeate. The lactose content of the permeate ranged from 4.98 to 5.02%. The results indicate that the final composition of whey protein concentrate can be altered by monitoring the volume reduction as well as by adjusting the whey pH before ultrafiltration.
Das Permeationsverhalten von Molke aus Büffelmilch-Cheddar während der Ultrafiltration
Zusammenfassung Es wurde das Permeationsverhalten von Molke aus Büffelmilch-Cheddar während der Ultrafiltration studiert, und zwar bei verschiedenen pH-Werten von 3,0 bis 7,2 bei 50 °C mit einer Volumenreduktion von 95% bei 1,75 bzw. 0,50 Innen- bzw. Außendruck. Es wurde beobachtet, daß das Rententat eine minimale Trockensubstanz von 3,17% bei pH 3,0 gegenüber 6,23% bei pH 7,2 hatte. Durch die pH-Abnahme von 7,2 auf 3,0 wurde auch der Aschegehalt des Retentats drastisch reduziert. Der Ca- und P-Gehalt des Retentats variierte ebenfalls signifikant mit der pH-Veränderung, gleichfalls der Protein- und Lactose-Gehalt. Das Permeat hatte einen Gesamtgehalt von 5,65 bis 5,78%. Der maximale Aschegehalt von 0,59% wurde in dem bei pH 3,0 ultrafiltrierten Permeat festgestellt; der Aschegehalt nahm signifikant ab, wenn das pH der Molke zunahm. Der Proteingehalt des Permeaters lag zwischen 0,18 und 0,23%, wobei das meiste Nicht-Proteinstickstoff war. Polyacrylamidgelelektrophorese zeigte die Gegenwart von -Lactalbumin und Spuren-Lactglobulin im Permeat. Der Lactosegehalt rangierte von 4,98 bis 5,02%. Die Ergebnisse zeigen, daß die endgültige Zusammensetzung des Molkenkonzentrates sowohl durch die Volumenverringerung als auch durch die pH-Einstellung der Molke vor der Ultrafiltration eingestellt werden kann.
  相似文献   

2.
Reduced-fat Cheddar cheese (RFC) was manufactured from standardized milk (casein/fat, C/F ˜ 1.8), obtained by (1) mixing whole milk (WM) and skim milk (SM) (control) or (2) mixing liquid milk protein concentrate (LMPC) and 35% fat cream (experimental). The percentage yield, total solid (TS) and fat recoveries in the experimental RFC were 22.0, 63.0 and 89.5 compared to 9.0, 50.7 and 87.0 in the control RFC, respectively. The average % moisture, fat, protein, salt and lactose were 40.7, 15.3, 32.8, 1.4 and 0.07%, respectively, in the experimental cheese and 39.3, 15.4, 33.0, 1.3 and 0.10%, respectively, in the control cheese. No growth of nonstarter lactic acid bacteria (NSLAB) was detected in the control or the experimental cheeses up to 3 months of ripening. After 6 months of ripening, the experimental cheese had 107 cfu NSLAB/g compared to 106 cfu/g in the control. The control cheese had higher levels of water-soluble nitrogen (WSN) and total free amino acids after 6 months of ripening than the experimental cheese. Sensory analysis showed that the experimental cheeses had lower intensities of milk fat and fruity flavours and decreased bitterness but higher intensities of sulphur and brothy flavours than in the control cheese. The experimental cheeses were less mature compared to the control after 270 days of ripening. It can be concluded from the results of this study that LMPC can be used in the manufacture of RFC to improve yield, and fat and TS recovery. However, proteolysis in cheese made with LMPC and cream is slower than that made with WM and SM.  相似文献   

3.
Yogurts made with 80% milk retentate (MR) [Volume Reduction Factor (VRF) = 1.5] and 20% cheese whey retentate (WR; VRF = 8.0) (yogurt 1) and yogurts made with 100% MR through ultrafiltration have been evaluated as to flow, texture profile analysis (TPA) and syneresis index. As with MR and WR, their physico‐chemical composition was also determined. The yogurt to which WR had been added showed; less apparent viscosity and greater tixotrophya; less firmness and adhesiveness and greater cohesiveness; higher syneresis index, less protein and mineral content, and greater lipid content in comparison with the yogurt made only with MR.  相似文献   

4.
The cheese-making characteristics of high-pressure (HP)-treated milk were examined. The rennet coagulation time of pasteurised milk decreased after HP treatment at 400 MPa but increased after treatment at 600 MPa. The L-value (whiteness) of milk decreased directly after HP treatment but, over the course of coagulation, whiteness of HP-treated milk increased to the same level as in the control. Cheddar cheese was then manufactured from raw whole milk or whole milk treated by high-pressure (HP) at 400 MPa (HP400) or 600 MPa (HP600) for 10 min at 20 °C. HP treatment of raw milk at 600 MPa resulted in a 3.66 log reduction in the initial counts of non-starter lactic acid bacteria (NSLAB), decreased protein and fat content, as well as a lower pH compared to the control. Furthermore, higher treatment pressures resulted in increased incorporation of β-lactoglobulin into the cheese curd, with parallel increases in yield by 1.23% and 7.78% for HP400 and HP600 cheeses, respectively. Overall, this study showed that the effects of HP treatment on milk proteins increased rennet coagulation times and changes in cheese composition at day 1.Industrial relevanceHigh-pressure treatment is a novel technology which has been applied to a number of commercial food products. In this study, HP-induced changes in milk proteins resulted in increased cheese yields and increased cheese whiteness. In addition, HP treatment significantly reduced the microflora of raw milk cheese. Those attributes could be of interest for both industry and consumer.  相似文献   

5.
Whey proteins in general and specifically β-lactoglobulin, α-lactalbumin, and immunoglobulins have been thought to decrease proteolysis in cheeses manufactured from concentrated retentates from ultrafiltration. The proteins found in whey are called whey proteins and are called milk serum proteins (SP) when they are in milk. The experiment included 3 treatments; low milk SP (0.18%), control (0.52%), and high milk SP (0.63%), and was replicated 3 times. The standardized milk for cheese making of the low milk SP treatment contained more casein as a percentage of true protein and more calcium as a percentage of crude protein, whereas the nonprotein nitrogen and total calcium content was not different from the control and high SP treatments. The nonprotein nitrogen and total calcium content of the milks did not differ because of the process used to remove the milk SP from skim milk. The low milk SP milk contained less free fatty acids (FFA) than the control and high milk SP treatment; however, no differences in FFA content of the cheeses was detected. Approximately 40 to 45% of the FFA found in the milk before cheese making was lost into the whey during cheese making. Decreasing the milk SP content of milk by 65% and increasing the content by 21% did not significantly influence general Cheddar cheese composition. Higher fat recovery and cheese yield were detected in the low milk SP treatment cheeses. There was more proteolysis in the low milk SP cheese and this may be due to the lower concentration of undenatured β-lactoglobulin, α-lactalbumin, and other high molecular weight SP retained in the cheeses made from milk with low milk SP content.  相似文献   

6.
Milk protein concentrate (MPC) contains high concentrations of casein and calcium and low concentrations of lactose. Enrichment of cheese milk with MPC should, therefore, enhance yields and improve quality. The objectives of this study were: 1) to compare pizza cheese made by culture acidification using standardized whole milk (WM) plus skim milk (SM) versus WM plus MPC; and 2) compare cheese made using WM + MPC by culture acidification to that made by direct acidification. The experimental design is as follows: vat 1 = WM + SM + culture (commercial thermophilic lactic acid bacteria), vat 2 = WM + MPC + culture, and vat 3 = WM + MPC + direct acid (2% citric acid). Each cheese milk was standardized to a protein-to-fat ratio of approximately 1.4. The experiment was repeated three times. Yield and composition of cheeses were determined by standard methods, whereas the proteolysis was assessed by urea polyacrylamide gel electrophoresis (PAGE) and water-soluble N contents. Meltability of the cheeses was determined during 1 mo of storage, in addition to pizza making. The addition of MPC improved the yields from 10.34 +/- 0.57% in vat 1 cheese to 14.50 +/- 0.84% and 16.65 +/- 2.23%, respectively, in vats 2 and 3 and cheeses. The percentage of fat and protein recoveries showed insignificant differences between the treatments, but TS recoveries were in the order, vat 2 > vat 3 > vat 1. Most of the compositional parameters were significantly affected by the different treatments. Vat 2 cheese had the highest calcium and lowest lactose contencentrations. Vat 3 cheese had the best meltability. Vat 1 cheese initially had better meltability than vat 2 cheese; however, the difference became insignificant after 28 d of storage at 4 degrees C. Vat 3 cheese had the softest texture and produced large-sized blisters when baked on pizza. The lowest and highest levels of proteolysis were found in vats 2 and 3 cheeses, respectively. The study demonstrates the use of MPC in pizza cheese manufacture with improved yield both by culture acidification as well as direct acidification.  相似文献   

7.
In a previous study, exopolysaccharide (EPS)-producing cultures improved textural and functional properties of reduced fat Cheddar cheese. Because base cheese has an impact on the characteristics of process cheese, we hypothesized that the use of EPS-producing cultures in making base reduced fat Cheddar cheese (BRFCC) would allow utilization of more young cheeses in making reduced fat process cheese. The objective of this study was to evaluate characteristics of reduced fat process cheese made from young BRFCC containing EPS as compared with those in cheese made from a 50/50 blend of young and aged EPS-negative cheeses. Reduced fat process cheeses were manufactured using young (2 d) or 1-mo-old EPS-positive or negative BRFCC. Moisture and fat of reduced fat process cheese were standardized to 49 and 21%, respectively. Enzyme modified cheese was incorporated to provide flavor of aged cheese. Exopolysaccharide-positive reduced fat process cheese was softer, less chewy and gummy, and exhibited lower viscoelastic moduli than the EPS-negative cheeses. The hardness, chewiness, and viscoelastic moduli were lower in reduced fat process cheeses made from 1-mo-old BRFCC than in the corresponding cheeses made from 2-d-old BRFCC. This could be because of more extensive proteolysis and lower pH in the former cheeses. Sensory scores for texture of EPS-positive reduced fat process cheeses were higher than those of the EPS-negative cheeses. Panelists did not detect differences in flavor between cheeses made with enzyme modified cheese and aged cheese. No correlations were found between the physical and melting properties of base cheese and process cheese.  相似文献   

8.
9.
Cheddar cheeses were made from pasteurised milk (P), raw milk (R) or pasteurised milk to which 10 (PR10), 5 (PR5) or 1 (PR1) % of raw milk had been added. Non-starter lactic acid bacteria (NSLAB) were not detectable in P cheese in the first month of ripening, at which stage PR1, PR5, PR10 and R cheeses had 104, 105, 106 and 107 cfu NSLAB g−1, respectively. After ripening for 4 months, the number of NSLAB was 1–2 log cycles lower in P cheese than in all other cheeses. Urea–polyacrylamide gel electrophoretograms of water-soluble and insoluble fractions of cheeses and reverse-phase HPLC chromatograms of 70% (v/v) ethanol-soluble as well as -insoluble fractions of WSF were essentially similar in all cheeses. The concentration of amino acids were pro rata the number of NSLAB and were the highest in R cheese and the lowest in P cheese throughout ripening. Free fatty acids and most of the fatty acid esters in 4-month old cheeses were higher in PR1, PR5, PR10 and R cheeses than in P cheese. Commercial graders awarded the highest flavour scores to 4-month-old PR1 cheeses and the lowest to P or R cheese. An expert panel of sensory assessors awarded increasingly higher scores for fruity/sweet and pungent aroma as the level of raw milk increased. The trend for aroma intensity and perceived maturity was R>PR10>PP5>PR1>P. The NSLAB from raw milk appeared to influence the ripening and quality of Cheddar cheese.  相似文献   

10.
Cheese milk was standardized (casein-to-fat ratio of 0.7) by blending 0.64% fat milk and 35% fat cream. Cream was homogenized at 0/0 MPa (CO), 3.5/3.5 MPa (H05), 6.9/3.5 MPa (H10) or 10.4/3.5 MPa (H15). Cream homogenization did not influence rennet-clotting time, but it increased rate of curd firming and increased curd firmness of cheese milk. Moisture and salt in moisture phase of cheese increased with homogenization. Moisture (37%) and salt (1.5%) adjusted yield increased 1.42, 3.44 and 3.85% in H05, H10 and H15, respectively, over CO. Homogenized treatment cheeses melted faster with age. Free oil in 1 week old cheeses was lowest in H10 and highest in H05 and increased in all treatments with age. Cheese hardness was not influenced by homogenization but decreased with age. Cheeses with homogenized cream had improved body and texture and flavor. Cream homogenized at 6.9/3.5 MPa was optimal for enhancing Cheddar cheese yield and functionality.  相似文献   

11.
12.
Previously undescribed oligosaccharides in bovine cheese whey permeate were characterized by a combination of nanoelectrospray Fourier transform ion cyclotron resonance (nESI-FTICR) mass spectrometry and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) mass spectrometry. Oligosaccharide composition was elucidated by collision-induced dissociation within the ICR cell. In addition to sialyllactose (the most abundant oligosaccharide in bovine colostrum), we identified 14 other oligosaccharides, half of which have the same composition of human milk oligosaccharides. These oligosaccharides could potentially be used as additives in infant formula and products for the pharmaceutical industry. Because whey permeate is a by-product from the production of whey protein concentrate (WPC) and is readily available, it is an attractive source of oligosaccharides for potential application in human nutrition.  相似文献   

13.
14.
As ovine milk production increases in the United States, somatic cell count (SCC) is increasingly used in routine ovine milk testing procedures as an indicator of flock health. Ovine milk was collected from 72 East Friesian-crossbred ewes that were machine milked twice daily. The milk was segregated and categorized into three different SCC groups: < 100,000 (group I); 100,000 to 1,000,000 (group II); and > 1,000,000 cells/ ml (group III). Milk was stored frozen at -19 degrees C for 4 mo. Milk was then thawed at 7 degrees C over a 3-d period before pasteurization and cheese making. Casein (CN) content and CN-to-true protein ratio decreased with increasing SCC group 3.99, 3.97, to 3.72% CN, and 81.43, 79.72, and 79.32% CN to true protein ratio, respectively. Milk fat varied from 5.49, 5.67, and 4.86% in groups I, II, and III, respectively. Hard ewe's milk cheese was made from each of the three different SCC groups using a Manchego cheese manufacturing protocol. As the level of SCC increased, the time required for visual flocculation increased, and it took longer to reach the desired firmness for cutting the coagulum. The fat and moisture contents were lower in the highest SCC cheeses. After 3 mo, total free fatty acids (FFA) contents were significantly higher in the highest SCC cheeses. Butyric and caprylic acids levels were significantly higher in group III cheeses at all stages of ripening. Cheese graders noted rancid or lipase flavor in the highest SCC level cheeses at each of the sampling points, and they also deducted points for more body and textural defects in these cheeses at 6 and 9 mo.  相似文献   

15.
凝乳酶对超滤浓缩乳生产Quark干酪的影响   总被引:1,自引:0,他引:1  
采用每100g超滤乳中添加0、50、100、150、200、250μL六个水平的凝乳酶,研究了不同的凝乳酶添加量对Quark干酪组成、凝乳硬度、贮藏期产品感官品质和干酪中水溶性氮含量的影响。结果表明,当凝乳酶的添加量从0μL/100g增大到250μL/100g时,产品的水分含量上升了1·49%,粗产率和校正产率分别上升了1·42%和0·99%,固形物的回收率下降了3·5%,凝乳硬度从16·83g增大到40·84g,但干酪的苦味和水溶性氮含量,随着贮存期的延长和凝乳酶用量的增加而增大。   相似文献   

16.
In a previous study, ultrafiltration (UF) at 1.2x reduced residual chymosin activity and bitterness in exopolysaccharide (EPS)-positive reduced fat Cheddar cheese. The objective of this research was to study the effect of this level of concentration on the textural and functional characteristics of the reduced fat cheese. Ultrafiltration (1.2x) did not affect the hardness, cohesiveness, adhesiveness, chewiness, and gumminess of EPS-positive cheese. The 6-month old UF cheeses were springier than non-UF cheeses. However, the springiness of the EPS-positive cheese made from UF milk was much lower than that of the EPS-negative cheeses. Texture of the EPS-negative cheese was more affected by UF than that of the EPS-positive cheese. Differences were seen in the extent of flow between UF and non-UF cheeses at 1 and 3-months but not after 6 months ripening. Ultrafiltration increased the elastic modulus in the 6-month old EPS-positive cheeses. Higher body and texture scores were given to EPS-positive cheeses than the EPS-negative ones. Sensory panelists found the body of the UF and non-UF cheeses to be similar.  相似文献   

17.
The quality of Cheddar cheese made from seasonal and standardized milk has been assessed over a 12-month period. There was a slight consumer preference for cheese made from seasonal milk, but the difference was small and unlikely to be of commercial significance. Grade scores for cheese 'body' were not reflected in a consumer taste panel assessment of the quality of the mature cheese.  相似文献   

18.
Cheese made with low temperature/long time-treated milk and thermised milk (LC and TC, respectively) showed diverse bacterial community patterns, while cheese made with high temperature/short time-treated milk (HC) showed the lowest microbial diversity. Although the proportion of subdominant species was <1%, significant differences in community patterns were observed. In particular, the proportions of Lactobacillus casei and Lactobacillus delbrueckii in LC and TC were significantly greater than those in HC. Moreover, chemical analysis revealed the highest proteolytic and lipolytic activities in TC. Based on these results, the characteristics of Cheddar cheese were influenced by bacterial communities in low abundance, which were affected by the type of heating applied to the cheese milks. Furthermore, the diversity of these bacterial communities is highly correlated with the heat treatment of milk, and different treatment methods can be used to alter the chemical metabolism of lactose, fat, and protein during ripening.  相似文献   

19.
《Journal of dairy science》2022,105(12):9367-9386
A growing number of companies within the cheese-making industry are now using high-protein (e.g., 4–5%) milks to increase cheese yield. Previous studies have suggested that cheeses made from high-protein (both casein and whey protein; WP) milks may ripen more slowly; one suggested explanation is inhibition of residual rennet activity due to elevated WP levels. We explored the use of microfiltration (MF) to concentrate milk for cheese-making, as that would allow us to concentrate the casein while varying the WP content. Our objective was to determine if reducing the level of WP in concentrated cheese milk had any impact on cheese characteristics, including ripening, texture, and nutritional profile. Three types of 5% casein standardized and pasteurized cheese milks were prepared that had various casein:true protein (CN:TP) ratios: (a) control with CN:TP 83:100, (b) 35% WP reduced, 89:100 CN:TP, and (c) 70% WP reduced, 95:100 CN:TP. Standardized milks were preacidified to pH 6.2 with dilute lactic acid during cheese-making. Composition, proteolysis, textural, rheological, and sensory properties of cheeses were monitored over a 9-mo ripening period. The lactose, total solids, total protein, and WP contents in the 5% casein concentrated milks were reduced with increasing levels of WP removal. All milks had similar casein and total calcium levels. Cheeses had similar compositions, but, as expected, lower WP levels were observed in the cheeses where WP depletion by MF was performed on the cheese milks. Cheese yield and nitrogen recoveries were highest in cheese made with the 95:100 CN:TP milk. These enhanced recoveries were due to the higher fraction of nitrogen being casein-based solids. Microfiltration depletion of WP did not affect pH, sensory attributes, or insoluble calcium content of cheese. Proteolysis (the amount of pH 4.6 soluble nitrogen) was lower in control cheeses compared with WP-reduced cheeses. During ripening, the hardness values and the temperature of the crossover point, an indicator of the melting point of the cheese, were higher in the control cheese. It was thus likely that the higher residual WP content in the control cheese inhibited proteolysis during ripening, and the lower breakdown rate resulted in its higher hardness and melting point. There were no major differences in the concentrations of key nutrients with this WP depletion method. Cheese milk concentration by MF provides the benefit of more typical ripening rates.  相似文献   

20.
《Journal of dairy science》2022,105(3):2058-2068
Microbial and chemical properties of cheese is crucial in the dairy industry to understand their effects on cheese quality. Microorganisms within this fat, protein, and water matrix are largely responsible for physiochemical characteristics and associated quality. Prebiotics can be used as an energy source for lactic acid bacteria in cheese by altering the microbial community and provide the potential for value-added foods, with a more stable probiotic population. This research focuses on the addition of fructooligosaccharides (FOS) or inulin to the Cheddar cheese-making process to evaluate the effects on microbial and physicochemical composition changes. Laboratory-scale Cheddar cheese produced in 2 replicates was supplemented with 0 (control), 0.5, 1.0, and 2.0% (wt/wt) of FOS or inulin using 18 L of commercially pasteurized milk. A total of 210 samples (15 samples per replicate of each treatment) were collected from cheese-making procedure and aging period. Analysis for each sample were performed for quantitative analysis of chemical and microbial composition. The prevalence of lactic acid bacteria (log cfu/g) in Cheddar cheese supplemented with FOS (6.34 ± 0.11 and 8.99 ± 0.46; ± standard deviation) or inulin (6.02 ± 0.79 and 9.08 ± 1.00) was significantly higher than the control (5.84 ± 0.27 and 8.48 ± 0.06) in whey and curd, respectively. Fructooligosaccharides supplemented cheeses showed similar chemical properties to the control cheese, whereas inulin-supplemented cheeses exhibited a significantly higher moisture content than FOS and the control groups. Streptococcus and Lactococcus were predominant in all cheeses and 2% inulin and 2% FOS-supplemented cheeses possessed significant amounts of nonstarter lactic acid bacteria found to be an unidentified group of Lactobacillaceae, which emerged after 90 d of aging. In conclusion, this study demonstrates that prebiotic supplementation of Cheddar cheese results in differing microbial and chemical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号