首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZrO2/Ni nanocomposite was produced via pulse electrodeposition using a nickel sulfmate bath. The effects of main factors including pH value, temperature T, current density Dk and ZrO2 content p on the electrodeposit were dealt with by the Taguchi method. Experimental results show that the current density and ZrO2 content affect the electrodepositing process significantly. Nanocomposite with an average grain size of about 50 nm and ZrO2 content of up to 0.4 wt% was produced under the optimal condition. The Young's modulus of the achieved composite is similar to that of polycrystalline Ni. The microhardness is much higher than that of common pure Ni, primarily due to the ultrafine grains of Ni matrix by the Hall-Petch mechanism. The homogeneous dispersion of stiff ZrO2 particles in the Ni matrix acting as dislocation pinning and microcrack pinning also results in the strengthening effect.  相似文献   

2.
ZrO2/Ni nanocomposite was produced by pulse electrodeposition and its superplastic properties were investigated by the tensile and bulging tests. The as-deposited nickel matrix has a narrow grain size distribution with a mean grain size of 45 nm. A maximum elongation of 605% was observed at 723 K and a strain rate of 1.67×10-3s-1 by tensile test. Superplastic bulging tests were subsequently performed using dies with diameters of 1 mm and 5 mm respectively based on the optimal superplastic forming temperature. The effects of forming temperature and gas pressure on bulging process were experimentally investigated. The results indicated that ZrO2/Ni nanocomposite samples can be readily bulged at 723 K with H/d value (defined as dome apex height over the die diameter) larger than 0.5, indicating that the nanocomposite has good bulging ability. SEM and TEM were used to examine the microstructure of the as-deposited and bulged samples. The observations showed that significant grain coarsening occurs during superplastic bulging, and the microstructure is found to depend on the forming temperature.  相似文献   

3.
The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will increase greatly with the increasing content of these two oxides, and Ce^4+ substitutes for Ba^2+ located at A-site in ABO3 structure. Quantitative XRD analysis shows that c/a ratio in the sample with addition of CeO2 will increase, which implies the increase of tetragonality in system, causing the augment of dielectric constant, and the decrease of the crystal's geometrical symmetry results in curie-temperature moving towards low temperature; Sm^3+(0.096 nm) substitutes for Ba^2+(0.135 nm) possessing larger radius in A-site and the electrovalency in A-site increases, the mutual effect is strengthened, so the polarization is enhanced, and the dielectric constant increases notablely.  相似文献   

4.
New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer SiO2/ZnO: Al/CeO2-TiO2/SiO2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of SiO2, ZnO: Al (ZAO) and CeO2-TiO2 (CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer SiO2 film can diminish the interference coloring and increase the transparency; the inner SiO2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption (> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.  相似文献   

5.
The preparation of functionally graded materials (FGMs) of (TiB2)pNi with an intermetallic compound media layer of Ni3Al and a substrate of nickel by field-activated pressure-assisted synthesis process (FAPAS) was investigated. Ni3Al was chosen as a layer of FGM for the first time due to its great deal of heat released during its synthesis from nickel and aluminium powder. The microstructure, phase composition of layers, micro-hardness and elemental concentration profiles across interfaces were characterized. The significant inter-diffusion of elements between layers showed the formation of good bonds. The measured micro-hardness values of the sample increased monotonically to more than 3 500 HK over a distance of 2 mm from the nickel substrate to the surface layer (TiB2)pNi. The results of this investigation demonstrate the feasibility of the FAPAS process for rapid formation of FGMs with good diffusion bonds.  相似文献   

6.
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.  相似文献   

7.
镁合金镀镍磷合金及无铬前处理工艺   总被引:7,自引:2,他引:7  
AZ91D镁合金首先在无铬的磷酸盐溶液中磷化,然后在硫酸盐镀液中镀镍磷合金。用SEM和XRD对磷化膜的化学组成及微观结构进行了表征,探讨了磷化膜及镍磷合金镀层的形成机理。结果表明:磷化膜主要由Zn3(PO4)2.4H2O和单质锌组成,金属锌粒子作为进一步镀镍磷合金的形核催化剂;磷化液中的间硝基苯磺酸钠使磷化膜的一部分微阳极区变为微阴极区,增加了磷化膜的成膜速度并细化了磷化膜结晶;在含4.0 g/L间硝基苯磺酸钠的磷化液中得到的磷化膜上沉积的镍磷合金镀层致密均匀,有较高的耐蚀性,镀层的附着强度符合ISO 2819的要求。  相似文献   

8.
The objective of the present work was to determine the influence of the neutral salt spray corrosion on the wear resistance of HVOF sprayed NiCr-Cr3C2 coating with intermediate layer. Ni-Zn-Al2O3 coatings as interlayers were prepared by low pressure cold spray (LPCS) between NiCr-Cr3C2 cermet coatings to form a sandwich structure to enhance the corrosion resistance properties. The tribological properties were examined using the UMT-3 fricition and wear tester by line-contact reciprocating sliding under dry and salt spray one week corrosion. The morphology, element distribution, and phase compositions of the coating and worn sufaces were analyzed by using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction respectively. The corrosion behavior of the coating was studied by the open-circuit potential, the electrochemical impedance spectroscopy, potentiodynamic polarization, and salt spray corrosion methods. It is found that the sandwich structured coating has better corrosion resistance than the single layer coating. The results show that under dry wear conditions, the wear mechanism is abrasive and adhesive wear, whereas under salt spray corrosion conditions it becomes corrosion wear. The friction coefficient of the sandwich structured coating after salt spray corrosion is slightly lower than the dry friction coefficient, but the weight of the wear loss is lower than that under dry condition.  相似文献   

9.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

10.
(Ba0.4Pb0.3)Sr0.3TiO3 thin films were fabricated via pulsed laser deposition (PLD) technique on Pt/TiO2/SiO2/Si substrate. The crystallization of the films was characterized by XRD and FSEM, and the experimental results suggested deposition parameters, especially the deposition temperature was the key factor in forming the perovskite structure. The dielectric properties of the film deposited with optimized parameters were studied by an Agilent 4294A impedance analyzer at 1 MHz. The dielectric constant was 772, and the loss tangent was 0.006. In addition, the well-shaped hysteresis loop also showed that the film had a well performance in ferroelectric. The saturated polarization P, remnant polarization Pr and coercive field E were about 4.6 μC/cm2, 2.5 μC/cm2 and 23 kV/cm (the coercive voltage is 0.7 V), respectively. It is suggested the film should be a promising candidate for microwave applications and nonvolatile ferroelectric random access memories (NvFeRAMs).  相似文献   

11.
ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition (LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.  相似文献   

12.
The Bi4Zr0.5Ti2.5O12 (BZT) thin films were fabricated on the LaNiO3 bottom electrode using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction, AFM and SEM. The results show that the films have a perovskite phase and dense microstructure. The 2Pr and 2Vc of the Pt/BZT/LaNiO3 capacitor are 28.2 μC/cm2 and 14.7 V respectively at an applied voltage of 25 V. After the switching of 1×1010 cycles, the Pr value decreases to 87% of its pre-fatigue values. The dielectric constant (ε) and the dissipation factor (tanδ) of the BZT thin films are about 204 and 0.029 at 1 kHz, respectively. The films show good insulating behavior according to the test of leakage current. The clockwise C-V hysteresis curve observed shows that the Pt/BZT/LaNiO3 structure has a memory effect because of the BZT film's ferroelectric polarization.  相似文献   

13.
Using plasma build-up welding technology, Ni60, WC, Cr3C2, and TiC composite powders were clad on the surface of the substrate in a certain proportion according to the metallurgical bonding method to increase the bond strength between the coating and the substrate. Scanning electron microscopy and energy dispersive spectroscopy were used to observe the microstructure of the surfacing layer and the chemical composition of the sample. The hardness and wear resistance of the surfacing layer were tested and analyzed by the HV-1000 hardness tester and the impact wear device. The results showed that in the microstructure, fishbone, spider-web, and floral-like structures appeared in the surfacing layer. When the micro-hardness was tested, the depth of the indentation reflected the hardness of the surfacing layer. When analyzing wear resistance, the amount of wear increases with time.  相似文献   

14.
ZrO2陶瓷表面化学镀镍   总被引:3,自引:0,他引:3  
研究了ZrO2陶瓷化学镀镍特殊的前处理工艺.对还原剂的浓度、络合剂的种类及浓度、pH值以及温度等因素对镀速和镀层中的含磷量的影响进行了探讨,并对镀层的性能以及微观形貌和结构进行了分析。结果表明,在该文工艺条件下能在ZrO2陶瓷表面获得细致均匀、结合力和耐蚀性能良好的化学镀镍层。  相似文献   

15.
The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.  相似文献   

16.
Al18B4O33 whisker was coated by SnO2 particles using a chemical precipitation method, and an aluminum matrix composite reinforced by the coated whisker was fabricated by squeeze casting technique. It is found that the SnO2 coating can react with aluminum matrix during squeeze casting process, and Sn particles are induced near the interface between Al18B4O33 whisker and matrix. The tensile test at room temperature indicated that the tensile strength of Al18B4O33 whisker reinforced aluminum matrix composite can be enhanced by suitable content of SnO2 coating. The composites with various whisker coating contents exhibit maximum tensile plasticity at about 300 ℃, and the composite with a suitable whisker coating content could enhance its tensile plasticity evidently, which suggest that an Al18B4O33 whisker-Al composite with both high strength at room temperature and high formability at elevated temperature can be designed.  相似文献   

17.
Lu  ZhiChao  Peng  XiangYang  Tang  YuHai  Han  ShuYin  Wu  Yuan  Fu  EnGang  Ding  XiangBin  Hou  Shuo  Lu  GuangYao  Cao  PeiPei  Zhang  YiBo  Liu  XiongJun  Ma  Dong  Wang  Hui  Jiang  SuiHe  Lu  ZhaoPing 《中国科学:技术科学(英文版)》2022,65(2):440-449

Lead-bismuth eutectics (LBE) have considerable potential as a candidate material for accelerator-driven sub-critical systems (ADS). However, LBE corrosion and irradiation damage are two urgent challenges remaining to be solved for impellers of primary pumps. In this study, we have explored the possibility of using Fe-based amorphous coatings to overcome LBE corrosion and concurrently to sustain irradiation damage. Specifically, the Fe54Cr18Mo2Zr8B18 amorphous coating was prepared by high-velocity oxygen-fuel (HVOF) spraying on 316L steel and exposed to saturated oxygen static LBE for 500 h at 400°C. The coating with high thermal stability (Tg=615°C and Tx=660°C) effectively prevented the substrate steel from being corroded by LBE owing to its unique long-range disordered atomic packing. The coating also exhibited strong irradiation resistance when being subjected to 45 dpa (displacement per atom) Au ion irradiation at room temperature, with no sign of crystallization even at the maximum implantation depth of 300 nm. Consequently, the hardness of the coatings before and after irradiation increased slightly. The current findings shed new insights into understanding corrosion mechanism and irradiation behavior of amorphous solids in LBE and expand the application range of amorphous materials.

  相似文献   

18.
Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived (PD) and spraying technology, via using vinyl-polysilazane (PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate (LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic.  相似文献   

19.
In this paper, the effects of Si and Ce on the microstructure and hydrogen storage property of Ti26.5Cr20V45Fe8.5Ce0.5 alloy were studied, respectively. First of all, effects of Si on the microstructure and hydrogen storage properties of Ti26.5Cr20(V45Fe8.5)1−x Si x Ce0.5 (x = 0, 0.5, 1.0, 1.5 and 2.0 at%) alloys were studied by X-ray diffraction, scanning electron microscopy and P-C isotherm measurements. As the Si addition increases, the hydrogen absorption capacities of alloys decrease but the equilibrium pressure increases, due to the formation of Laves phase. Secondly, the effect of Ce on Ti26.5Cr20 (V45Fe8.5)0.98Si2 alloy was studied. It was found that Ce addition is an effective way to eliminate the effect of Si on the hydrogen storage properties of the alloy. Supported by the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA05Z144)  相似文献   

20.
The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY-Y2O3 stabilized ZrO2 transition layer and Y2O3 stabilized ZrO2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investigated by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introducing a transition layer between Ni alloy substrate and ZrO2 ceramic coating guarantees the high quality and properties of the coatings; ZrO2 coatings doped with a little SiO2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO2 coating materials without SiO2; the improvement in performance of ZrO2 coating doped with SiO2 is due to forming more dense coating structure by self- closing effects of the flaws and pores in the ZrO2 coatings. Biography of the first author: LU An-xian, Ph.D, professor, born in Jan. 1960, majoring in inorganic non-metal materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号