首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hatem M. Bahig 《Computing》2011,91(4):335-352
An addition chain for a natural number n is a sequence \({1=a_0 < a_1 < \cdots < a_r=n}\) of numbers such that for each 0 < i ≤ r, a i  = a j  + a k for some 0 ≤ k ≤ j < i. The minimal length of an addition chain for n is denoted by ?(n). If j = i ? 1, then step i is called a star step. We show that there is a minimal length addition chain for n such that the last four steps are stars. Then we conjecture that there is a minimal length addition chain for n such that the last \({\lfloor\frac{\ell(n)}{2}\rfloor}\)-steps are stars. We verify that the conjecture is true for all numbers up to 218. An application of the result and the conjecture to generate a minimal length addition chain reduce the average CPU time by 23–29% and 38–58% respectively, and memory storage by 16–18% and 26–45% respectively for m-bit numbers with 14 ≤ m ≤ 22.  相似文献   

2.
This paper considers a conflict situation on the plane as follows. A fast evader E has to break out the encirclement of slow pursuers P j1,...,j n = {P j1,..., P jn }, n ≥ 3, with a miss distance not smaller than r ≥ 0. First, we estimate the minimum guaranteed miss distance from E to a pursuer P a , a ∈ {j 1,..., j n }, when the former moves along a given straight line. Then the obtained results are used to calculate the guaranteed estimates to a group of two pursuers P b,c = {P b , P c }, b, c ∈ {j 1,..., j n }, bc, when E maneuvers by crossing the rectilinear segment P b P c , and the state passes to the domain of the game space where E applies a strategy under which the miss distance to any of the pursuers is not decreased. In addition, we describe an approach to the games with a group of pursuers P j1,... jn , n ≥ 3, in which E seeks to break out the encirclement by passing between two pursuers P b and P c , entering the domain of the game space where E can increase the miss distance to all pursuers by straight motion. By comparing the guaranteed miss distances with r for all alternatives b, c ∈ {j 1,..., j n }, bc, and a ? {b, c}, it is possible to choose the best alternative and also to extract the histories of the game in which the designed evasion strategies guarantee a safe break out from the encirclement.  相似文献   

3.
Systems of equations of the form X i =φ i (X 1,…,X n ) (1 i n) are considered, in which the unknowns are sets of natural numbers. Expressions φ i may contain the operations of union, intersection and elementwise addition \(S+T=\{m+n\mid m\in S\), nT}. A system with an EXPTIME-complete least solution is constructed in the paper through a complete arithmetization of EXPTIME-completeness. At the same time, it is established that least solutions of all such systems are in EXPTIME. The general membership problem for these equations is proved to be EXPTIME-complete. Among the consequences of the result is EXPTIME-completeness of the compressed membership problem for conjunctive grammars.  相似文献   

4.
The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for graphs isomorphic with Kn, n, m. It is proved that the sequence of bi-regular graphs Kn(ij)?=?((Kn???1???M)?+?K1)???(unui)???(unuj) admits 1-vertex bimagic vertex labeling, where ui, uj is any pair of non-adjacent vertices in the graph Kn???1???M, un is a vertex of K1, M is perfect matching of the complete graph Kn???1. It is established that if an r-regular graph G of order n is distance magic, then graph G + G has a 1-vertex bimagic vertex labeling with magic constants (n?+?1)(n?+?r)/2?+?n2 and (n?+?1)(n?+?r)/2?+?nr. Two new types of graphs that do not admit 1-vertex bimagic vertex labelings are defined.  相似文献   

5.
In its simplest form, the longest common substring problem is to find a longest substring common to two or multiple strings. Using (generalized) suffix trees, this problem can be solved in linear time and space. A first generalization is the k -common substring problem: Given m strings of total length n, for all k with 2≤km simultaneously find a longest substring common to at least k of the strings. It is known that the k-common substring problem can also be solved in O(n) time (Hui in Proc. 3rd Annual Symposium on Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer Science, pp. 230–243, Springer, Berlin, 1992). A further generalization is the k -common repeated substring problem: Given m strings T (1),T (2),…,T (m) of total length n and m positive integers x 1,…,x m , for all k with 1≤km simultaneously find a longest string ω for which there are at least k strings \(T^{(i_{1})},T^{(i_{2})},\ldots,T^{(i_{k})}\) (1≤i 1<i 2<???<i k m) such that ω occurs at least \(x_{i_{j}}\) times in \(T^{(i_{j})}\) for each j with 1≤jk. (For x 1=???=x m =1, we have the k-common substring problem.) In this paper, we present the first O(n) time algorithm for the k-common repeated substring problem. Our solution is based on a new linear time algorithm for the k-common substring problem.  相似文献   

6.
We analyze the asymptotic behavior of the j-independence number of a random k-uniform hypergraph H(n, k, p) in the binomial model. We prove that in the strongly sparse case, i.e., where \(p = c/\left( \begin{gathered} n - 1 \hfill \\ k - 1 \hfill \\ \end{gathered} \right)\) for a positive constant 0 < c ≤ 1/(k ? 1), there exists a constant γ(k, j, c) > 0 such that the j-independence number α j (H(n, k, p)) obeys the law of large numbers \(\frac{{{\alpha _j}\left( {H\left( {n,k,p} \right)} \right)}}{n}\xrightarrow{P}\gamma \left( {k,j,c} \right)asn \to + \infty \) Moreover, we explicitly present γ(k, j, c) as a function of a solution of some transcendental equation.  相似文献   

7.
On conditional diagnosability and reliability of the BC networks   总被引:1,自引:1,他引:0  
An n-dimensional bijective connection network (in brief, BC network), denoted by X n , is an n-regular graph with 2 n nodes and n2 n?1 edges. Hypercubes, crossed cubes, twisted cubes, and Möbius cubes all belong to the class of BC networks (Fan and He in Chin. J. Comput. 26(1):84–90, [2003]). We prove that the super connectivity of X n is 2n?2 for n≥3 and the conditional diagnosability of X n is 4n?7 for n≥5. As a corollary of this result, we obtain the super connectivity and conditional diagnosability of the hypercubes, twisted cubes, crossed cubes, and Möbius cubes.  相似文献   

8.
We consider the following scheduling problem. We have m identical machines, where each machine can accomplish one unit of work at each time unit. We have a set of n fully parallel jobs, where each job j has \(s_j\) units of workload, and each unit workload can be executed on any machine at any time unit. A job is considered complete when its entire workload has been executed. The objective is to find a schedule that minimizes the total weighted completion time \(\sum w_j C_j\), where \(w_j\) is the weight of job j and \(C_j\) is the completion time of job j. We provide theoretical results for this problem. First, we give a PTAS of this problem with fixed m. We then consider the special case where \(w_j = s_j\) for each job j, and we show that it is polynomial solvable with fixed m. Finally, we study the approximation ratio of a greedy algorithm, the Largest-Ratio-First algorithm. For the special case, we show that the approximation ratio depends on the instance size, i.e. n and m, while for the general case where jobs have arbitrary weights, we prove that the upper bound of the approximation ratio is \(1 + \frac{m-1}{m+2}\).  相似文献   

9.
The Doob graph D(m, n), where m > 0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K 4 on four vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m 3/36+7m 2/24+11m/12+1?(m mod 2)/8?(m mod 3)/9 MDS codes with code distance 2m + n in D(m, n), two codes with distance 3 in each of D(2, 0) and D(2, 1) and with distance 4 in D(2, 1), and one code with distance 3 in each of D(1, 2) and D(1, 3) and with distance 4 in each of D(1, 3) and D(2, 2).  相似文献   

10.
A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ? STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces.  相似文献   

11.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

12.
Consideration was given to the classical NP-hard problem 1|rj|Lmax of the scheduling theory. An algorithm to determine the optimal schedule of processing n jobs where the job parameters satisfy a system of linear constraints was presented. The polynomially solvable area of the problem 1|rj|Lmax was expanded. An algorithm was described to construct a Pareto-optimal set of schedules by the criteria Lmax and Cmax for complexity of O(n3logn) operations.  相似文献   

13.
The Euler quotient modulo an odd-prime power pr (r > 1) can be uniquely decomposed as a p-adic number of the form \(\frac{{u^{(p - 1)p^{r - 1} } - 1}}{{p^r }} \equiv a_0 (u) + a_1 (u)p + \cdots + a_{r - 1} (u)p^{r - 1} (\bmod p^r ), \gcd (u,p) = 1,\) where 0 ? aj (u) < p for 0 ? j ? r?1 and we set all aj (u) = 0 if gcd(u, p) > 1. We firstly study certain arithmetic properties of the level sequences (aj (u))u?0 over \(\mathbb{F}_p \) via introducing a new quotient. Then we determine the exact values of linear complexity of (aj (u))u?0 and values of k-error linear complexity for binary sequences defined by (aj (u))u?0.  相似文献   

14.
This article proposes a method to study M / E s / 1 / m, E r E s /1 / m, and E r / M / n / m queuing systems including the case when m = ∞. Recurrence relations are obtained to compute the stationary distribution of the number of customers in a system and its steady-state characteristics. The developed algorithms are tested on examples using simulation models constructed with the help of the GPSS World tools.  相似文献   

15.
A grid graph \(G_{\mathrm{g}}\) is a finite vertex-induced subgraph of the two-dimensional integer grid \(G^\infty \). A rectangular grid graph R(mn) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(mn) such that a rectangular grid subgraph R(kl) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.  相似文献   

16.
Tracking frequent items (also called heavy hitters) is one of the most fundamental queries in real-time data due to its wide applications, such as logistics monitoring, association rule based analysis, etc. Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of real-time data is usually collected from multiple sources in a distributed environment. Unfortunately, data collected from each source is often uncertain due to various factors: imprecise reading, data integration from multiple sources (or versions), transmission errors, etc. In addition, due to network delay and limited by the economic budget associated with large-scale data communication over a distributed network, an essential problem is to track the global frequent items from all distributed uncertain data sites with the minimum communication cost. In this paper, we focus on the problem of tracking distributed probabilistic frequent items (TDPF). Specifically, given k distributed sites S = {S 1, … , S k }, each of which is associated with an uncertain database \(\mathcal {D}_{i}\) of size n i , a centralized server (or called a coordinator) H, a minimum support ratio r, and a probabilistic threshold t, we are required to find a set of items with minimum communication cost, each item X of which satisfies P r(s u p(X) ≥ r × N) > t, where s u p(X) is a random variable to describe the support of X and \(N={\sum }_{i=1}^{k}n_{i}\). In order to reduce the communication cost, we propose a local threshold-based deterministic algorithm and a sketch-based sampling approximate algorithm, respectively. The effectiveness and efficiency of the proposed algorithms are verified with extensive experiments on both real and synthetic uncertain datasets.  相似文献   

17.
We consider a geographic optimization problem in which we are given a region R, a probability density function f(?) defined on R, and a collection of n utility density functions u i (?) defined on R. Our objective is to divide R into n sub-regions R i so as to “balance” the overall utilities on the regions, which are given by the integrals \(\iint _{R_{i}}f(x)u_{i}(x)\, dA\). Using a simple complementary slackness argument, we show that (depending on what we mean precisely by “balancing” the utility functions) the boundary curves between optimal sub-regions are level curves of either the difference function u i (x) ? u j (x) or the ratio u i (x)/u j (x). This allows us to solve the problem of optimally partitioning the region efficiently by reducing it to a low-dimensional convex optimization problem. This result generalizes, and gives very short and constructive proofs of, several existing results in the literature on equitable partitioning for particular forms of f(?) and u i (?). We next give two economic applications of our results in which we show how to compute a market-clearing price vector in an aggregate demand system or a variation of the classical Fisher exchange market. Finally, we consider a dynamic problem in which the density function f(?) varies over time (simulating population migration or transport of a resource, for example) and derive a set of partial differential equations that describe the evolution of the optimal sub-regions over time. Numerical simulations for both static and dynamic problems confirm that such partitioning problems become tractable when using our methods.  相似文献   

18.
We analyze the necessary existence conditions for (a, d)-distance antimagic labeling of a graph G = (V, E) of order n. We obtain theorems that expand the family of not (a, d) -distance antimagic graphs. In particular, we prove that the crown P n P 1 does not admit an (a, 1)-distance antimagic labeling for n ≥ 2 if a ≥ 2. We determine the values of a at which path P n can be an (a, 1)-distance antimagic graph. Among regular graphs, we investigate the case of a circulant graph.  相似文献   

19.
We address the problem of minimizing power consumption when broadcasting a message from one node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce a compelling new data streaming problem which we call the Bad Santa problem. Our results on this problem apply for any situation where: (1) a node can listen to a set of n nodes, out of which at least half are non-faulty and know the correct message; and (2) each of these n nodes sends according to some predetermined schedule which assigns each of them its own unique time slot. In this situation, we show that in order to receive the correct message with probability 1, it is necessary and sufficient for the listening node to listen to a \(\Theta(\sqrt{n})\) expected number of time slots. Moreover, if we allow for repetitions of transmissions so that each sending node sends the message O(log?? n) times (i.e. in O(log?? n) rounds each consisting of the n time slots), then listening to O(log?? n) expected number of time slots suffices. We show that this is near optimal.We describe an application of our result to the popular grid model for a radio network. Each node in the network is located on a point in a two dimensional grid, and whenever a node sends a message m, all awake nodes within L distance r receive m. In this model, up to \(t<\frac{r}{2}(2r+1)\) nodes within any 2r+1 by 2r+1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing power or ceasing to function. Let n=r(2r+1). We show how to solve the broadcast problem in this model with each node sending and receiving an expected \(O(n\log^{2}{|m|}+\sqrt{n}|m|)\) bits where |m| is the number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected \(O(\sqrt{n})\) time slots. Moreover, for t≤(1?ε)(r/2)(2r+1), for any constant ε>0, we can achieve an even better energy savings. In particular, if we allow each node to send O(log?? n) times, we achieve reliable broadcast with each node sending O(nlog?2|m|+(log?? n)|m|) bits and receiving an expected O(nlog?2|m|+(log?? n)|m|) bits and, after broadcasting a fingerprint of m, each node is awake for only an expected O(log?? n) time slots. Our results compare favorably with previous protocols that required each node to send Θ(|m|) bits, receive Θ(n|m|) bits and be awake for Θ(n) time slots.  相似文献   

20.
This paper proposes a strengthening of the author’s core-accessibility theorem for balanced TU-cooperative games. The obtained strengthening relaxes the influence of the nontransitivity of classical domination αv on the quality of the sequential improvement of dominated imputations in a game v. More specifically, we establish the k-accessibility of the core C v ) of any balanced TU-cooperative game v for all natural numbers k: for each dominated imputation x, there exists a converging sequence of imputations x0, x1,..., such that x0 = x, lim x r C v ) and xr?m is dominated by any successive imputation x r with m ∈ [1, k] and rm. For showing that the TU-property is essential to provide the k-accessibility of the core, we give an example of an NTU-cooperative game G with a ”black hole” representing a nonempty closed subset B ? G(N) of dominated imputations that contains all the α G -monotonic sequential improvement trajectories originating at any point xB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号