首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
根据对煤体的宏观与微观观测,对原有煤层气储层几何模型进行了修正和完善,并建立了针对构造煤的储层几何模型,将原有的单一直径球形基质孔隙模型扩展为双直径球形孔隙模型,同时对两类几何模型的适应条件进行了论述,最后指出的双直径球形孔隙内煤层气的扩散方程揭示了构造煤储层煤层气运移产出机理.  相似文献   

2.
煤层气储层为双孔隙结构,常规天然气测井评价方法不适合于评价煤层气储层,本文在大量煤田测井文献基础上,选用有效参数,利用三孔隙度差异法、空间模量差比法等识别煤层气储层,基于Matlab设计软件,绘制三角交汇图和M-N分析图,通过煤层体积模型计算碳、灰、水含量,计算煤阶、孔隙度、渗透率和含气量来评价煤及煤层气储层性质。  相似文献   

3.
为了探讨织金、纳雍地区煤层气的勘探开发潜力,运用各种测试手段从孔、裂隙系统角度研究了该区煤储层物性特征,分析了煤储层的聚气能力、渗流能力及其控制因素.研究后认为该区煤变质程度高,煤储层吸附能力强,对煤层气的吸附聚集较为有利;而煤储层渗流能力低,仅局部地区存在高渗条件,不利于煤层气的产出;煤储层物性特征受控于该区复杂的构造条件,前燕山期的深成变质作用使得煤岩吸附能力增强,渗流能力下降,而燕山期强烈的构造运动使得断裂带附近的煤储层吸附能力和渗流能力整体增大,改善了局部地区煤储层物性特征.研究结果表明:织金、纳雍地区煤储层孔隙中以吸附孔为主,吸附孔隙百分比为50.61%~89.71%,吸附能力较强;而煤储层渗流孔隙百分比仅为21.14%,且煤岩显微裂隙密度普遍低于100条/9cm2,裂隙连通性较差,煤储层的渗透率相对较低;强烈的构造活动产生了大量的断层,地下的岩浆热液通过断层向上侵入,使得局部地区煤的变质程度迅速增加,同时产生大量的孔裂隙,改善了断层发育区附近煤储层的孔渗条件,后期的矿化作用充填了部分孔裂隙,一定程度上控制了煤储层物性,不利于后期的煤层气开发.  相似文献   

4.
在分析白额地区2^#煤储层空间发育特征、储层物性特征、含气量分布特征及区域构造背景的基础上,对煤层气成藏控制因素进行分析。结果表明:构造演化史直接控制着煤储层埋藏史及生烃史,是煤层气成藏主控因素;地下水水动力特征和围岩封闭特征决定了煤层气藏的保存条件,是煤层气成藏的关键;综合以上特征,可以得出2#煤煤层气藏为单斜-水动力封堵型煤层气藏。  相似文献   

5.
在分析白额地区2#煤储层空间发育特征、储层物性特征、含气量分布特征及区域构造背景的基础上,对煤层气成藏控制因素进行分析。结果表明:构造演化史直接控制着煤储层埋藏史及生烃史,是煤层气成藏主控因素;地下水水动力特征和围岩封闭特征决定了煤层气藏的保存条件,是煤层气成藏的关键;综合以上特征,可以得出2#煤煤层气藏为单斜-水动力封堵型煤层气藏。  相似文献   

6.
煤层气成藏的构造应力场研究   总被引:18,自引:1,他引:18  
构造应力场是控制煤层气成藏极为重要的因素,深入探讨不同性质构造应力场对煤储层的改造及控制机理,将会为煤层气勘探前景评价提供重要的理论基础.本文在区域构造应力场研究的基础上,分别探讨了不同性质构造应力场的作用特征及其对构造发育、构造展布、构造组合及构造变形的控制作用;分析了不同性质构造及其组合、应力-应变环境对煤储层的改造作用,探讨了不同变形机制和不同结构构造煤在不同构造应力场中的发育及展布规律.研究表明,挤压应力场作用下,在强变形带的中心及其附近,可以形成糜棱煤类构造煤,但糜棱煤分布较为局限;在较大范围内形成脆性变形系列的构造煤,是煤层气勘采的有利区带;拉张构造应力场中,大部分区域内有利于煤层裂隙的形成和渗透率的提高,但易造成煤层气的散失,含气量降低,应重视有利的储气构造的研究.剪切构造应力场中,以平移断层为界,煤层的赋存状态、煤体结构和煤储层物性都会存在一定的差异,应对不同的构造单元分别研究其煤储层特征.  相似文献   

7.
河东煤田乡宁地区主煤层储层物性特征及意义   总被引:3,自引:1,他引:3  
通过煤矿井下观察及室内测试,对研究区晚古生代煤系主要煤储层的物性特征及煤层气勘探开发前景进行了分析.结果表明:主要煤储层中割理较为发育,割理面以NW走向为主,且多为紧闭;孔隙率较高,孔比表面积主要分布于孔径较小的微孔和过渡孔段,孔隙的连通性较差,煤层渗透率极低;主要煤储层的含气性总体上较差,可能与喜山期的拉张应力作用有关,具有煤层气勘探开发前景的地区可能处于区内西北部的煤层深埋区及区内次级向斜等构造有利部位.  相似文献   

8.
高煤级煤储层条件下的气体扩散机制   总被引:1,自引:0,他引:1  
为了研究高煤级煤储层煤层气排采中气体的扩散行为,采用扫描电镜和压汞法对不同煤级煤的孔隙进行了观测和测试,根据气体分子运动理论和扩散理论,探讨了沁水盆地无烟煤储层煤层气排采的不同阶段气体扩散模式的动态演化.研究表明,煤层气排采过程中,孔隙内气体的扩散模式是动态变化的:相同排采阶段,同一孔径范围内的孔隙的扩散方式因压降不同而存在差异.不同排采阶段,同一孔隙可能会经历不同的气体扩散模式.对于无烟煤储层,Knudsen型扩散很弱,过渡型扩散贯穿于排采的整个过程.Fick型扩散主要发生排采初期,在排采末期主要出现在距离井筒较远地段.  相似文献   

9.
焦作矿区二1煤储层特征评价   总被引:6,自引:2,他引:4  
对焦作矿区二1煤储层特征及其主要影响因素进行了系统的分析,结果表明,本区煤层气具有含量高、煤储层压力略高于静水压力、气饱和度较高和煤吸附性能较强,但煤层的渗透性较差和储层温度较低等特征.由于煤变质及其演化、断块构造及其差异升降运动和三叠纪末抬升剥蚀以及第三、四纪局部快速沉降等因素,对煤储层特性产生了显著的影响,使本区煤储层特征分布具有明显的差异性.  相似文献   

10.
在分析颚尔多斯盆地煤储层压汞孔隙分布的基础上,定量计算了各煤样的分维数,并分析了煤的孔容分维数特征,研究结果表明,煤储层孔容分维数在3.0741-3.4371之间,随着分维数的增加,煤变程度和压汞效率减小,而储层孔隙率的增加,储层渗透率变大,提出孔隙分维数可作为煤层气储层渗透性评价的指标之一。  相似文献   

11.
煤层气储集层的孔隙特征   总被引:17,自引:2,他引:15  
煤层气储集层即煤层本身,它是一种双孔隙岩石,由基质孔隙和裂隙组成,二者对煤层气赋存、运移和产出起决定作用.本文对这两类孔隙的特征、形成机制及其控制因素、研究方法等进行了详细论述.  相似文献   

12.
煤层气藏与常规天然气藏地质及开采特征比较   总被引:2,自引:0,他引:2  
煤层气是一种与煤岩同生共体以甲烷为主要成分,主要以吸附状态赋存在沉积盆地煤层之中的可燃气体,也就是煤矿生产中有名的瓦斯气。煤层气藏作为一种非常规常气藏,从地质成因与特征,储集与开采特征以及储量评价多个方面,与常规气藏有着不同之处,因此对两种类型的气藏进行详细的比较与总结十分必要,同时也为煤层甲烷气开发与开采中的各项研究如煤层气藏工程,煤层气井试井,完井,煤层气藏模拟等奠定了基础。  相似文献   

13.
煤层气富集成藏受煤储层地质特征的制约。通过对大量实验测试数据的分析与对比,研究了乡宁矿区煤层气成藏基础地质特征,主要包括煤储层发育特征、煤岩学特征、煤化学与工艺特征及煤级与煤相特征等。结果表明,本区主要煤层煤空间展布稳定、累计厚度大、煤质好、热演化程度高,具备煤层气成藏的基础条件。  相似文献   

14.
煤层气藏是一种非常规天然气藏,与常规天然气藏在赋存方式、物性参数以及开发方式等方面存在较大差异。煤层气藏三维地质模型能够精确描述煤层以及物性参数空间分布,推动煤层气藏的认识由定性向定量的转变,对煤层气藏的开发具有重要意义。以澳大利亚B区块煤层气藏为研究对象,综合应用地质、地震、测井、煤岩取芯分析等资料,分析构造解释的煤层层面、测井精细解释结果以及物性参数精细表征结果;借助Petrel三维地质建模软件,以地震解释煤层顶面构造和断层结果为数据基础,以测井煤层划分结果为约束条件,建立B区块构造模型;在构造建模基础上,以测井资料划分的单井岩相数据为基准,建立煤层相模型;煤层气藏物性参数建模以相控建模理论为指导,以煤层气物性参数表征结果为数据基础,实现干燥无灰基含气量、渗透率、密度、灰分含量、饱和度等物性参数空间分布模拟。在建立的三维地质模型基础上,利用煤层气藏储量计算方法,计算B区块地质储量,确定B区块煤层气有利区优选物性参数及标准,划分煤层气藏有利区。煤层气藏三维地质模型为煤层气藏地质储量计算以及有利区筛选奠定坚实的地质基础,同时也为井型选择与井网布置等后续开发工作提供地质依据。  相似文献   

15.
煤层气有限导流压裂井的压力动态分析   总被引:13,自引:9,他引:4  
针对煤层气产出过程中的降压,解吸,扩散,渗流等特点,应用非稳态解吸模型;研究了煤层气在基质和割理中的单相流动;建立了新有有限导流压裂井评价模型;讨论了裂缝壁面表皮系数,吸附系数,裂缝储容系数和窜流系数对压力动态的影响;分析了煤层气压裂井的压降典型曲线特征和参数估计方法,从而为煤层气藏开发提供了可靠的数据。  相似文献   

16.
用常规黑油模型模拟煤层气开采过程   总被引:1,自引:0,他引:1  
流体在煤层中的传输机理由两部分组成,气体在煤内表面解吸,并通过基岩和微孔隙扩散进入裂缝网络中。若岩块表面甲烷气体的释放速度比气,水相在煤层割理中的流动速度快得多,那么在模拟煤层气开采过程时,解吸动能可以不考虑,根据这个假设可认为:在给定压力下煤层吸附的甲烷气体量类似于相应压力下溶解在原油中的气体量,煤层中的朗格缪尔等温曲线可视为常规黑油油藏中的溶解气油比曲线。若将煤层表面的吸附气作为不流动油中溶解气来处理,那么可用常规黑油模型描述煤层气,而不需要对模型源码做会何修改,基于上述思路,用黑油模型模拟煤层气开采过程,并与用煤层气模拟软件(COMETPC)的计算结果进行了比较,趋势非常接近。  相似文献   

17.
淮北地区煤储层物性及煤层气勘探前景   总被引:24,自引:1,他引:23  
研究了淮北地区地物构造演化及控气特征,结果认为:淮北地区印支期以来的构造演化对煤储层物性控制作用十分显著,以EW向的宿北断裂为界,北部地区煤层气勘探前景不佳,南部地区的东部,煤层的展布受褶皱形态的控制。在宿面向斜和南坪向斜中,煤层埋深、煤体结构、含气性、含气量和渗透率等储层物性均有利于煤层气的运移、聚集和保存,具有较好的煤层气勘探前景;临涣矿区强变形构造煤发育,煤体结构复杂,基本无勘探前景;涡阳矿区正断层发育,煤层气含量相对较小,但渗透性较好,值得进一步深入研究。  相似文献   

18.
沁水盆地南部煤层气藏特征   总被引:5,自引:1,他引:5  
以油气、煤田和煤层气勘探阶段积累的资料为基础,系统探讨了沁南煤层气藏的特征.通过对气藏静态特征(包括煤层空间几何形态、煤层气成分和含量、储层物性、吸附特征、储层压力及封闭条件)和动态过程(包括煤层气形成、运移和聚集)的分析,指出晚古生代的煤层在经历了印支期和燕山期两次煤化作用生成的煤层气,在喜马拉雅期遭受了严重的调整与改造后逐渐形成现今的沁南煤层气藏.直接控制该煤层气藏中煤层气富集程度的因素为顶底板与边界断层.目前的高产煤层气井基本上都位于地下水滞流区.  相似文献   

19.
Adsorption isotherm relates the gas storage capacity as a function of pressure at constant temperature. In this paper, adsorption isotherm of two dry borehole samples was constructed in the laboratory using the manometric method. Isotherm was measured for two gases, i.e., CH_4 and CO_2 to pressure up to 8.4 MPa.Before the construction of sorption isotherm, coal was characterized by proximate, ultimate and petrographic analysis. Coalbed gas content of these two samples was found 2.29 m~3/t and 2.75 m~3/t. SEM images were obtained for the pore size distribution of coal using pore image analysis. Prediction of coalbed methane recovery from CH_4 adsorption isotherm showed that these coalbeds are under saturated. CO_2 isotherm was constructed to estimate enhanced coalbed methane(ECBM) recovery. Volume wise CO_2/CH_4 sorption ratio was found 2.09 times to 2.75 times respectively. This paper presents the interpretation of isotherm data to find the recovery factor of methane production from Jharia coalfield.  相似文献   

20.
河南省下二叠统山西组二_1煤煤层气储层描述   总被引:4,自引:0,他引:4  
从煤厚、煤岩组成、煤级、煤体结构、裂隙系统、渗透性、吸附/解吸特性等方面对河南省的主可采煤层二1煤的煤层气的储层特征进行了详细论述.指出镜质组含量较高、割理比较发育、外生裂隙发育适中的原生结构煤和碎裂煤渗透性最好,是最有利的储层;外生裂隙发育适中的无烟煤是有利储层;碎粒煤为不利储层;糜棱煤为不可开发储层.临界解吸压力较高、含气量较高的中煤级煤分布区是煤层气勘探开发的首选地区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号