首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked.  相似文献   

2.
The Nuclear Technology Laboratory of the Aristotle University of Thessaloniki has since 1999 an open research project of indoor radon measurements in Greek workplaces. Since now 1380 measurements in 690 workplaces have been performed. Most (75 %) of the workplaces were offices in schools. The remaining 25 % were offices, mainly in public buildings. In the present study, a possible correlation between radon concentration in schools and other workplaces is investigated and discussed.  相似文献   

3.
Radon and gamma dose rate measurements have been performed in 561 workplaces in 19 prefectures of Greece. The distribution of radon concentration can be well described by a log-normal distribution. Most of the radon concentrations are between 50 and 200 Bq m(-3) with an arithmetic mean of 123 Bq m(-3). The maximum measured value of radon gas concentration is 695 Bq m(-3). About 10% of the workplaces exceed 200 Bq m(-3). Only a small fraction ( approximately 1%) of workplaces exceed the European Commission action level (400 Bq m(-3)). Despite the relative small fraction of workplaces which exceed the value of 400 Bq m(-3), it is clear from the results of the present work that for certain prefectures, further and more extensive research is needed.  相似文献   

4.
This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.  相似文献   

5.
Since 2003, the German Federal Office for Radiation Protection (BfS) has conducted annual interlaboratory comparisons for passive radon measuring devices in order to ensure the quality of these measurements. Passive radon devices which use solid state nuclear track detectors, electrets or activated charcoal can be tested. The exposures of radon devices are carried out in the radon calibration laboratory at BfS. Radon activity concentrations are traced back to the national standard, being established at the National Institute of Physics and Metrology (PTB). According to the national guideline, radon services which offer radon monitoring at workplaces have to participate in the intercomparisons and prove the suitability of their radon devices for the measurements.  相似文献   

6.
This paper presents the results of measurements made with the electronic personal neutron Saphydose-N during the four campaigns of the European contract EVIDOS (EValuation of Individual DOSimetry in mixed neutron and photon radiation fields). These measurements were performed at Institute for Radiological Protection and Nuclear Safety (IRSN) in France (C0), at the Krümmel Nuclear Power Plant in Germany (C1), at the VENUS Research Reactor and the Belgonucléaire fuel processing plant in Belgium (C2) and at the Ringhals Nuclear Power Plant in Sweden (C3). The results for Saphydose-N are compared with reference values for dose equivalent.  相似文献   

7.
A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.  相似文献   

8.
The present paper describes field performance of two different passive radon monitor devices formed, respectively, by a CR-39 track detector enclosed in a diffusion chamber and a cellulose nitrate detector (LR-115) in a heat-sealed polyethylene bag. The most important scope of these investigations was to study the performance of these detectors directly in the field. To this end, two different types of radon monitors mentioned above have been exposed simultaneously in 100 school rooms within the Italian region Friuli Venezia Giulia. Finally, the accuracy of their responses has been evaluated by exposing them under extreme humidity conditions and/or together with other radon measurement instruments.  相似文献   

9.
A new passive integral dosemeter for gamma ray monitoring is being developed using an imaging plate (IP). In the application of IPs to dosimetry, a fading effect causes serious problems. The fading is considered to be caused by the recombination or holes and charges trapped shallowly in the F centres, which have several activation energies. Appropriate annealing procedures allow elimination of trapped charges with low activation energies, and quantitative estimation of the radiation dose is possible. The optimum condition for minimising the effect of fading on dose estimation was obtained by post-irradiation annealing of BAS-MS (BAS-MS2025, fabricated by Fuji Film Co. Ltd) IPs at 80 degrees C for 24 h. This was confirmed by calculation. Under this condition, the detection limit was calculated to be 3.15 microSv when 10% error is allowed. A 1-month integral dose was measured by the IP. The results were compared with those obtained using a commercially available fluoro-glass dosemeter.  相似文献   

10.
Evaluation of LiF:Mg,Ti thermoluminescence dosemeters (TLDs) according to the high-temperature ratio (HTR) method enables the determination of the dose-average linear energy transfer (LET), the mean quality factor and the dose equivalent in mixed radiation fields of unknown composition. The neutron contribution is assessed by the Extended Pair method calibrated in the CERN-EU High-Energy Reference Field (CERF). The advantages of the small passive detectors as an easy-to-handle monitoring system for in-flight surveillance are demonstrated by measurements on-board north-bound and trans-equatorial flights. The experimental results are compared with calculations by the well-established CARI code.  相似文献   

11.
The construction of underground tunnels through radon-bearing rock poses a radiation health risk to tunnelling workers from exposure to radon gas and its radioactive decay products. This paper presents the development and practical application of a radon assessment strategy suitable for the measurement of radon in tunnelling work environments in Hong Kong. The assessment strategy was successfully evaluated on a number of underground railway tunnelling projects over a 3 y period. Radon measurements were undertaken using a combination of portable radon measurement equipment and track etch detectors (TEDs) deployed throughout the tunnels. The radon gas monitoring results were used to confirm that ventilation rates were adequate or identified, at an early stage, when further action to reduce radon levels was required. Exposure dose estimates based on the TED results showed that the exposure of tunnel workers to radon did not exceed 3 mSv per annum for the duration of each project.  相似文献   

12.
A new instrument to assess neutron ambient doses has been designed and constructed. In its design, spectrometric capabilities have been implemented that allow to take into account the energy spectrum of the neutron field in the evaluation of the operational magnitude, ambient dose equivalent, H*(10). This dosemeter is based on the moderation-absorption technique and can be employed over a wide range of energies from thermal to 20 MeV. It consists of a spherical shaped polyethylene moderator with a set of thermoluminescence dosemeters (TLDs) inserted in different positions of its interior to evaluate the external neutron energy spectrum. At this moment the system uses pairs 6LiF:Mg,Ti (TLD-600) and 7LiF:Mg,Ti (TLD-700) thermoluminescence dosemeters for a better gamma discrimination. The dosemeter response matrix was calculated using the MCNP4C Monte Carlo code (MC). The viability of the dosemeter for area dosemetry has been examined experimentally showing its capabilities over a wide range of energies.  相似文献   

13.
Extensive radon surveys have been carried out in many countries only in dwellings, whereas surveys in workplaces are rather sparse and generally restricted to specific workplaces/activities, e.g. schools, spas and caves. Moreover, radon-prone areas are generally defined on the basis of radon surveys in dwellings, while radon regulations use this concept to introduce specific requirements in workplaces in such areas. This approach does not take into account that work activities and workplace characteristics can significantly affect radon concentration. Therefore, an extensive survey on radon in different workplaces have been carried out in a large region of Italy (Tuscany), in order to evaluate radon distribution in workplaces over the whole territory and to identify activities and workplace characteristics affecting radon concentration. The results of this extensive survey are compared with the results of the survey carried out in dwellings in the same period. The workplaces monitored were randomly selected among the main work activities in the region, including both public and industrial buildings. The survey monitored over 3500 rooms in more than 1200 buildings for two consecutive periods of ~6 months. Radon concentration was measured by means of passive nuclear track detectors.  相似文献   

14.
The performance of a personal neutron dosemeter with a single silicon diode using a linear combination of its pulse height information was studied. Its dosimetric behaviour in fields with neutrons of different energy and directional distribution is shown for neutron energies ranging from thermal to 100 MeV and for directions of incidence ranging from frontal to lateral. The dosemeter is photon-insensitive and its dose detection threshold is at about 20 microSv. The dosimetric characteristics are compared with those of commercial dosemeters based on silicon detectors.  相似文献   

15.
The four passive samplers (quatrefoil) already described in a parallel paper, make it possible to obtain thin radiation sources, useful for alpha and beta counting by any passive and real-time detector. In the present paper, the applications of this quatrefoil for measuring radon gas by etch-track detectors will be described. In the case of radon measurements, different solids have been identified, with radon-sorption partition coefficients related to air from 1 to 2000. Uniquely compact radon badges can be obtained by using a layer of these solids facing an alpha track-etch detector. These radon badges make it possible to overcome most of the shortcomings of existing passive monitors. Moreover, these badges show promise for studying the radon solubility of polymer films.  相似文献   

16.
The new RAMARN system for radon volume activity measurement was developed in 2003 and has been in use since then. RAMARN system consists of a plastic chamber that is conically cylindrical in shape and about 0.5 l in volume; a bare Kodak LR 115 is located on the bottom of this diffusion chamber. The size was chosen to avoid the influence of deposited decay products of radon. Kodak has a spectrometric character-the tracks are visualized only for alphas with energies between 1 and 3 MeV that touch the foil; thus the effective volume has a lens shape. The response therefore corresponds to diffused radon and half of (218)Po born by radon gas decay. The experiments described below were conducted as one part of a routine methodology control, focused on classifying worker irradiation from natural ionizing radiation sources in show caves and in caves used for speleotherapy.  相似文献   

17.
The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following (90)Sr/(90)Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ~5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly 'single-glow peak' curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ~15% (1 SD) compared with ~25% for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for (90)Sr/(90)Y low-ionisation density irradiations to a maximum value of ~0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1-1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a 'nanoscopic' mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5.  相似文献   

18.
High concentrations of radon exist in several workplaces like tourist caves mainly because of the low ventilation rates existing at these enclosures. In this sense, in its 1990 publication, the ICRP recommended that high exposures of radon in workplaces should be considered as occupational exposure. In developed caves in which guides provide tours for the general public great care is needed for taking remedial actions concerning radon, because in some circumstances forced ventilation may alter the humidity inside the cave affecting some of the formations or paintings that attract tourists. Tourist guides can work about 1900 h per year, so the only option to protect them and other cave workers from radon exposure is to apply an appropriate system of radiation protection mainly based on limitation of exposure by restricting the amount of time spent in the cave. Because of the typical environmental conditions inside the caves, the application of these protecting actions requires to know some indoor air characteristics like particle concentration, as well as radon progeny behaviour in order to get more realistic effective dose values In this work the results of the first two set of radon measurements program carried out in 10 caves located in the region of Cantabria (Spain) are presented.  相似文献   

19.
20.
A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号