首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将TA1/5052爆炸焊接复合板在350、400及450 ℃分别保温1、3、6、9 h退火,对退火前后复合板组织和性能进行分析。结果表明:随退火温度升高,原子扩散加剧,界面形成的扩散层逐渐变厚;退火过程中铝易于向钛侧扩散,白色亮带和柯肯达尔孔洞主要位于靠近界面的5052铝合金侧;退火前界面处物相组成为α-Ti、α-Al、TiAl3,经350、400 ℃退火3 h及450 ℃退火1、3、6、9 h后,物相组成不变。经不同温度退火后,复合板界面抗拉强度低于退火前,而断面收缩率和伸长率明显高于退火前。拉伸断口分析表明,复合板TA1侧为以脆性断裂为主、韧性断裂为辅的韧脆混合断裂,5052侧为韧性断裂;复合板在350 ℃退火时界面剪切强度和剥离强度最大,较爆炸态分别增加8.24%和45.68%,随退火温度升高,界面剪切强度和剥离强度降低。退火前后界面结合区硬度均高于基复板两侧硬度,且随离界面距离增加,硬度逐渐降低直至降至钛铝两侧母材硬度。退火后界面结合区硬度明显低于爆炸态硬度。  相似文献   

2.
针对以纯钛板和工业纯铝为原料铸造复合得到的Ti/Al复合板,采用不同保温时间的退火工艺制度研究了退火时间对Ti/Al复合板的组织和性能的影响。结果表明:随着退火时间延长,在复合界面处的扩散层宽度增大。在退火过程中,Ti-Al系金属间化合物的形成和生长是导致Ti/Al复合界面显微硬度增加、结合强度下降的主要原因。在浇铸温度为700℃、退火温度为550℃、保温2 h退火后,Ti/Al复合板结合强度有较大提升,为最佳退火工艺。  相似文献   

3.
采用铸轧法制备厚度为5.0 mm的钛铝复合板,并对制得的复合板进行不同工艺的退火处理,然后使用剥离试验机对铸轧态、退火态的复合板进行剥离强度检测,利用配备有EDS的扫描电镜(SEM)、XRD、TEM对剥离面以及界面层进行形貌观察和物相分析。结果表明:铸轧态复合板的剥离强度为28 N/mm,在450℃×3 h退火处理时剥离强度达到最大值为33 N/mm,界面层厚度增加到1.5μm,随着退火温度的升高或者保温时间的延长,剥离强度出现略微下降,XRD表明退火处理后两侧剥离面物相没有改变,退火后界面处发现的唯一的金属间化合物为Ti Al3。  相似文献   

4.
借助扫描电镜、撕裂试验以及高速冲击试验研究了温轧钛/铝复合板600℃退火热处理过程界面化合物生长动力学、界面结合强度以及高速冲击应力-应变曲线的变化规律。退火热处理过程中Ti Al3是钛铝界面生成的唯一中间相,且该相的生长指数n=0.66,600℃保温0.5 h钛铝界面已生成连续的中间相。随着保温时间的增加,中间相厚度增加;而界面结合强度随着中间相厚度的增加而降低;高速冲击时钛/铝复合板应力-应变曲线的趋势一致,但是钛铝中间相厚度4.0μm的应力比中间相厚度0.5μm的略大,中间相厚度4.0μm应力-应变曲线面积为181.64 J/m3,而中间相厚度0.5μm时的面积为167 J/m3。  相似文献   

5.
通过爆炸焊接技术制备的钛/铝复合板可兼具钛合金耐腐蚀性和铝合金低成本的优点。对钛/铝复合板爆炸焊接技术的研究进展进行介绍,论述了炸药种类、质量比R、基覆板间距及爆炸焊接窗口等主要工艺参数对钛/铝复合板组织和性能的影响;分析了影响钛/铝复合板结合界面的主要因素——金属间化合物种类、扩散层和界面波形;对钛/铝复合板硬度、抗剪切强度、抗拉强度及拉伸断口的研究进行了汇总分析。最后,指出了钛/铝复合板爆炸焊接工艺研究的重点发展方向。  相似文献   

6.
对55%变形条件下冷轧复合4A60铝/08Al钢复合带材进行退火处理,研究退火温度对钢层再结晶行为和铝-钢界面结合强度的影响。结果表明:退火温度为600 ℃保温60 min,钢层发生完全再结晶;退火温度为400~600 ℃,保温60 min,铝-钢复合板界面结合强度达到最大值9 N/mm,当保温时间为60 min,温度高于610 ℃时,铝-钢界面处产生脆性化合物,结合强度急剧降低至2.7 N/mm。确定55%变形条件下铝-钢复合板最佳退火工艺为600 ℃保温60 min。  相似文献   

7.
带夹层材料的爆炸-轧制钛钢复合板工艺研究   总被引:3,自引:0,他引:3  
为扩大钛-钢复合板的尺寸,采用一种新颖的组料方式,这种方法包括两个主要步骤,首先用爆炸焊接的方式将DT4夹层与钛板结合,然后按照对称方式组坯。研究轧制温度、退火温度对复合板剪切强度的影响。利用扫描电镜、光学显微镜和显微硬度试验机对复合板的微观组织和界面附近硬度进行分析。结果表明:复合板的结合强度取决于轧制温度和轧后退火温度,当轧制温度超过钛的α→β相变温度,并且退火温度超过750℃时,Ti/DT4界面脆性化合物明显增多,剪切强度显著降低;当退火温度超过900℃,Fe在钛中扩散速度快,显微硬度的峰值在钛侧出现;在550~650℃退火,复合板的结合强度略有升高。  相似文献   

8.
对银铜爆炸复合板进行不同形变量后再进行不同温度的退火处理,研究银铜爆炸复合板在不同退火温度下界面结合状态,同时分析焊接界面处熔融产物形态及元素组成。结果表明:银铜复合板的结合界面均出现了爆炸焊接所特有的波形形貌,界面结合性良好,未出现明显的气孔、夹杂、空洞与微裂纹,银板与铜板之间形成了良好的结合;形变率为80%后,未出现明显的界面分离现象;经350℃保温60 min后,不同形变率下银铜爆炸复合板均发生再结晶转变;与350℃相比,450℃、550℃退火处理时晶粒尺寸有所增加,当温度增加至650℃时,晶粒尺寸明显增加,同时界面处的显微硬度显著降低;银铜爆炸复合板界面处熔融产物中Ag与Cu成分随机性较大,未呈现规律性。  相似文献   

9.
为了获得更好的锆-钛-钢复合板的综合性能,研究了热处理对锆-钛-钢复合板的影响。通过对锆-钛-钢界面的剪切强度试验分析,发现剪切强度随热处理温度的降低而减小。垂直于波纹方向的抗剪强度高于平行于波纹方向的抗剪强度。基于正交试验和方法分析,热处理因素对剪切强度和粘接强度的影响主次关系是:保温温度>保温时间>温度变化率。剪切试验的断口形貌为局部脆性断裂的韧性断裂。通过对力学性能、界面组织和显微硬度的分析,500℃,2 h,60℃/h;540℃,1 h,60℃/h的热处理均为合适的热处理工艺。随着保温温度的升高,晶粒变粗,界面富集元素富集区和扩散区,形成脆性金属间化合物Fe Ti。界面的显微硬度随热处理温度的升高而降低。  相似文献   

10.
利用热压扩散焊接法法制备钛-钢复合材料。采用用扫描电镜、EDS分析、拉剪试验和三点弯曲试验等方法,研究了扩散焊接温度对钛-钢复合界面附近形貌、成分、界面剪切强度和弯曲性能的影响。结果表明:热压扩散焊接法在压力3 MPa,真空度≥10-3Pa,保温时间1 h,焊接温度≥820℃的条件下,有Ti、Fe原子相互扩散,可实现冶金结合;在焊接温度≥740℃条件下,钛钢界面的拉伸剪切强度都大于基体强度;在740~840℃的焊接温度下,抗弯曲性能随温度升高而先增大后减小,800℃的抗弯曲性能最强,达到29.71MPa。  相似文献   

11.
为了获得更好的锆-钛-钢复合板的综合性能,研究了热处理对锆-钛-钢复合板的影响。通过对锆-钛-钢界面的剪切强度试验分析,发现剪切强度随热处理温度的降低而减小。垂直于波纹方向的抗剪强度高于平行于波纹方向的抗剪强度。基于正交试验和方法分析,热处理因素对剪切强度和粘接强度的影响主次关系是:保温温度保温时间温度变化率。剪切试验的断口形貌为局部脆性断裂的韧性断裂。通过对力学性能、界面组织和显微硬度的分析,500℃, 2 h, 60℃/h;540℃, 1 h, 60℃/h的热处理均为合适的热处理工艺。随着保温温度的升高,晶粒变粗,界面富集元素富集区和扩散区,形成脆性金属间化合物Fe Ti。界面的显微硬度随热处理温度的升高而降低。  相似文献   

12.
为得到锆-钛-钢爆炸复合板最优热处理工艺,采用正交试验法研究保温温度、保温时间和热处理升降温速率3个因素对复合板粘结强度和残余应力的影响。结果表明,保温温度540℃、保温时间1 h、热处理升降温速率60℃/h为最优热处理工艺,复合板可以获得最佳粘结强度和残余应力状态组合,保温温度过高,时间太长都会降低粘结强度。此外,还对最优热处理工艺下复合板结合面进行了显微硬度测定,微观组织和断口形貌的观察。分析显示,复合板结合界面附近形成细晶区,显微硬度较大;结合面粘结试验断裂形式为韧性加解理混合型断裂。  相似文献   

13.
文中提出以薄的铝合金板作为过渡层,采用爆炸焊接技术成功制备钛/铝/镁层状复合材料. 对钛/铝接合界面、铝/镁接合界面及钛/铝/镁爆炸复合板的整体力学性能进行了分析研究. OM和SEM试验结果表明,钛/铝接合界面和铝/镁接合界面均为波状接合界面,在铝/镁界面出现了局部熔化区;钛/铝接合界面为小尺寸波(λ=160 μm,h=26 μm),铝/镁接合界面为大尺寸波(λ=1 740 μm,h=406 μm);拉-剪试验表明,复合板沿着铝/镁接合界面断裂;弯曲性能测试表明,钛板一侧受拉时复合板弯曲强度和塑性均优于镁合金板一侧受拉,断裂始于铝/镁接合界面,最终从镁合金板一侧剪切断裂失效.  相似文献   

14.
为了研究钛-钢-钛三层复合板的微观界面和力学性能,在对两次爆炸焊接的动能损耗进行计算的基础上,利用扫描电镜及能谱分析仪对两次爆炸焊接的界面进行了研究比较;对复合板进行了显微硬度测试、弯曲强度试验和剪切强度试验。结果表明:第二次爆炸焊接时的动能损耗更大,动能经过复板向基板传递,导致首次爆炸结合界面缺陷较明显,其熔化层和熔化块数量较多,体积较大;二次爆炸结合界面呈较好的波状结合。首次爆炸焊接界面处的显微硬度高于二次爆炸焊接界面,说明首次爆炸焊接界面的塑性变形更为严重;复合板在弯曲试验中未断裂和分离,抗弯性能良好;首次爆炸焊接界面处的结合强度低于二次爆炸焊接界面,但均满足复合板强度标准。  相似文献   

15.
研究3 mm厚的钛/钢复合板在爆炸焊接工艺技术条件下,采用不同药量的低爆速炸药,通过从起爆端开始沿爆轰长度方向对结合界面进行波纹检测及氧化和熔化研究,研究低爆速炸药不同用药量时在钛/钢复合板的稳定爆轰长度,为长度≥4 m钛/钢复合板爆炸焊接工艺参数的制定建立基础.  相似文献   

16.
铜/铝/铜轧制复合板的退火工艺研究   总被引:6,自引:1,他引:5  
研究了低温长时间和高温短时两种退火工艺对铜/铝/铜轧制复合板的成型性能及界面结合强度的影响,讨论了退火强化现象没有出现的原因。结果表明,退火处理不能提高铜/铝/铜轧制复合板的结合强度,只能改善复合板的成型性能。铜/铝轧制复合板宜采用高温短时退火制度,退火温度选择580~625℃,时间控制在10min以内,此工艺得到的铜/铝轧制复合板综合性能最佳。  相似文献   

17.
对TA2/Q235爆炸焊接复合板在500~600℃进行了退火处理,分析了退火温度对TA2纯钛晶粒尺寸及复合板显微硬度的影响规律。结果表明:TA2/Q235爆炸焊接复合板在500~600℃退火时,TA2纯钛晶粒尺寸先增大后减小再增大,575℃退火可获得细小均匀的组织; TA2纯钛显微硬度先减小再增大再减小,575℃退火时TA2纯钛显微硬度最高;综合考虑退火温度对TA2纯钛晶粒尺寸和力学性能的影响规律,TA2/Q235爆炸焊接复合板在575℃下退火较合理。  相似文献   

18.
为改善5083Al和304不锈钢爆炸焊接质量,提升隔热效果,本研究采用1060Al、TA1和Ni作夹层材料,制备了具有热传导梯度的五层爆炸复合板。为消除爆炸焊接后的残余应力,减少绝热剪切带和微裂纹等缺陷,采用550℃×60min退火工艺对五层爆炸复合板进行退火处理,并通过SEM、EBSD和万能试验机等手段,分析研究退火对其组织演化及力学性能的影响。结果表明:五层爆炸复合板的4个焊接界面均呈波形,且在界面处存在微裂纹、孔洞、绝热剪切带和漩涡区等缺陷。经退火处理,4个焊接界面均发生不同程度的再结晶,微裂纹、绝热剪切带等缺陷得到有效改善;5083Al/1060Al/TA1界面的β相和Al-Ti金属间化合物增多,TA1/Ni界面在原TiNi3熔化层的基础上新增TiNi熔化层和Ti2Ni熔化层。界面抗拉剪强度均有所降低,但均仍远高于相应国标使用要求;拉脱试样在5083Al/1060Al界面断裂分离。  相似文献   

19.
通过热处理模拟TA2/Q235爆炸复合板服役过程,揭示服役条件对复合板组织及剪切性能的影响规律,探讨剪切损伤机理,明确TA2/Q235服役温度范围。结果表明:服役温度大于200 ℃时,服役温度越高或服役时间越长,TA2/Q235爆炸焊接复合板剪切强度越低;TA2/Q235爆炸焊接复合板高温服役时结合强度降低的主要原因是界面结合区组织的二次再结晶及金属间化合物的进一步长大;TA2/Q235爆炸焊接复合板适合在500 ℃以下长时间服役,500~600 ℃服役时间不能超过7天,若提高该材料服役温度到500 ℃以上,必须严格限制复合板结合界面金属间化合物的形成。  相似文献   

20.
钛/不锈钢爆炸焊接接头退火性能的研究   总被引:4,自引:1,他引:4  
通过拉伸试验,组织分析,断口形貌分析以及焊缝显微硬度的,研究了钛/不锈钢爆炸焊接接头强度及退火工艺对焊接接头强度的影响。结果表明,钛/不锈钢爆炸焊接界面结合强度高于纯钛;退火温度低于400℃,焊接接头的强度不降低,缺口强度约为530MPa;退火温度为500℃时,焊接接头的强度显著降低,缺口强度小于420MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号