首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
选用胜利褐煤和玉米秸秆为原料,在高压反应釜内,对其共液化反应性进行了研究。利用索氏抽提对液相产物进行了分离,系统地考察了反应温度、原料配比、初始氢压和反应时间对胜利煤和秸秆共液化的影响。研究结果表明:秸秆能够有效地促进胜利煤的转化,提高油产率。在反应温度420℃、初始氢压9MPa、秸秆/胜利煤质量配比=2/8和反应时间60min时,胜利煤和秸秆共液化的转化率和油产率分别为99.74%、65.30%。  相似文献   

2.
兖州煤与木质素共液化反应性的研究   总被引:3,自引:0,他引:3  
采用单因素法,以四氢萘为供氢溶剂,以Fe2O3和S为催化剂,在高压釜内,研究了配比、温度、反应时间和初始氢压对兖州煤与木质素共液化反应性的影响.结果表明,在液化中适量添加木质素可提高兖州煤的液化反应性.综合考虑实验条件和经济成本,得到共液化的最佳工艺条件为:兖州煤:木质素(质量比)=9:1,440℃,60min,8MPa,在此条件下转化率与油产率分别为86.8%与62.9%.  相似文献   

3.
胜利煤与木屑共液化研究   总被引:2,自引:0,他引:2  
以胜利煤与木屑为原料,采用Fe2O3催化剂和S助催化剂,用高压反应釜,研究了配比、温度、反应时间及初始氢压等因素对两者共液化的影响.研究结果表明,木屑能促进煤的转化,当木屑与煤的质量比为1∶9时,油产率达到最大值;在实验条件范围内,转化率和油产率均随反应温度、反应时间和初始氢压的增大而增大.  相似文献   

4.
利用高压反应釜,采取程序控制升温的方法,以义马煤为原料,循环油为溶剂,Fe2O3为催化剂和S为助催化剂,在不同反应时间、温度和初始氢压下,测定了义马煤直接液化效果的影响因素.结果表明,随着温度升高,转化率呈减小趋势,而油产率随着反应温度的增加呈现出先增加后减小的趋势,在380℃时油产率达到最大值;随着初始压力的增加,转化率和油产率都有所增加,但增加幅度很小,在9 MPa时油产率达到最大值;随着反应时间的增加,转化率和油产率都有所增加,在120 min时油产率和转化率均达到最大值.  相似文献   

5.
杨建良 《辽宁化工》2014,(7):837-838
以硫酸亚铁为铁源,硫化钠为沉淀剂,采用液相沉淀法合成了超细FeS催化剂。以四氢萘为溶剂,反应温度430℃、氢初压6.0 MPa、反应时间60 min、溶煤比2∶1条件下,探讨超细FeS催化剂对五彩湾煤直接液化性能的影响。结果表明:硫酸亚铁基超细FeS粒子形貌均一,呈细棒状;五彩湾煤直接液化实验的油产率、液化率和转化率,以2.0%(wt,以活性金属元素计,相对于干燥无灰煤,下同)超细FeS为催化剂的实验分别达到56.15、73.29和81.21%(wt,相对于干燥无灰煤,下同),高于相同条件下,以3.0%分析纯Fe2O3为催化剂的实验产率(分别是44.00、49.33和62.05%)。  相似文献   

6.
对不同惰质组分含量的上湾煤样进行了高压釜煤液化实验。在反应温度440~465℃,氢初压7~11 MPa条件下,研究了5种不同惰质组含量的上湾煤的液化性能。结果表明:在反应温度为440~465℃内,随着温度的升高,除惰质组含量最高的5号煤样在温度高于465℃时转化率开始下降以外,其余不同惰质组含量的4种煤的转化率、油产率、气产率和氢耗均随着温度的升高而增加,沥青烯产率随温度的升高而减小;随着氢初压的增加,不同显微组含量的煤的转化率和油产率增加,沥青烯产率减小。惰质组含量越高,煤的转化率和油收率越低。  相似文献   

7.
为研究新疆淖毛湖煤直接液化反应特性和产品分布规律,在0.5 L间歇式高压釜中,以四氢萘为溶剂,纳米氧化铁为催化剂及S为助剂,考察了不同反应温度、反应时间条件对煤转化率和液化产物收率的影响。结果表明:淖毛湖煤易液化,在反应器温度刚加热到425℃时,煤转化率和液化油收率已分别达到96.6%、56.68%;随着反应温度的升高以及反应时间的延长,煤转化率、氢耗、气体产率、油收率逐渐增加,而沥青类物质产率下降,水产率基本保持不变;当反应温度进一步增加以及反应时间继续延长,轻质油将会发生裂解,导致气体产率进一步增加,而油收率有所降低。当反应温度为455℃、反应时间为80 min时,煤转化率达到99.6%,油、沥青和气体收率分别为73.42%、1.64%、16.61%,氢耗为4.85%。基于液化试验结果,建立了5集总的反应动力学模型,采用优化算法获得动力学模型参数,煤转化率、沥青类物质和油气收率的模拟值和试验值的相对误差分别为0.5%、1.0%、8.0%。  相似文献   

8.
高惰质组分五彩湾煤直接液化性能研究   总被引:2,自引:1,他引:1  
以新疆五彩湾煤为研究对象,进行了煤质和热解分析,考察了溶煤比、反应时间、氢初压和反应温度对其加氢液化效果的影响.结果表明,尽管五彩湾煤惰质组含量高达81.5%,镜质组最大反射率达到0.73%,挥发分低于37%,H/C仅为0.59,但在氢初压仅为6.0MPa,溶煤比1.75和反应时间60min条件下,其最佳液化温度为450℃,油产率和转化率分别达到55.20%和76.76%,仍然具有良好的液化性能.  相似文献   

9.
有效性和经济角度考虑,选定硫铁化物为煤与生物质加氢共液化的催化剂.在不同条件下制备的催化剂对反应有不同的催化效果.硫铁催化剂可降低反应苛刻度,在300~400℃范围内可明显提高反应转化率和油产率.建议合适的反应条件为:温度350℃,反应时间20min,初始冷氢压3.40MPa.  相似文献   

10.
孙文娟 《应用化工》2011,40(7):1226-1228
在高压釜内,研究了温度、反应时间、初始氢压和搅拌速率对木质素加氢液化反应的影响。结果表明,木质素加氢液化的最佳工艺条件为:温度300℃,反应时间60 min,氢压3 MPa,搅拌速率800 r/min。在此条件下,木质素转化率与液体产率分别为71.3%与66.8%。  相似文献   

11.
Co-liquefaction of lignite and sawdust under syngas   总被引:1,自引:0,他引:1  
Individual and co-liquefaction of lignite and sawdust (CLLS) under syngas was performed in an autoclave and the effects of temperature, initial syngas pressure, reaction time and ratio of solvent to coal and biomass on the product distribution of CLLS were studied. Sawdust is easier to be liquefied than lignite and the addition of sawdust promotes the liquefaction of lignite. There is some positive synergetic effect during CLLS. In the range of the experimental conditions investigated, the oil yield of CLLS increases with the increase of temperature, reaction time (10-30 min) and the ratio of the solvent to the feedstock (0-3), but varies little with the increase of initial syngas pressure. Accordingly, the total conversion, the yield of preasphaltene and asphaltene (PA + A) and gas, changes by the difference in operation conditions of liquefaction. The gas products are mainly CO and CO2 with a few C1-C4 components. The syngas can replace the pure hydrogen during CLLS. The optimized operation conditions in the present work for CLLS are as follows: syngas, temperature 360 °C, initial cold pressure 3.5 MPa, reaction time 30 min, the ratio of solvent to coal and sawdust 3:1. Water gas shift reaction occurs between CO in the syngas and H2O from coal and sawdust moisture during the co-liquefaction, producing the active hydrogen which increases the conversion of liquefaction and decreases the hydrogen consumption.  相似文献   

12.
Research on production of shale oil by direct hydrogenation of oil shale has been conducted in batch stirred autoclave reactors. The objective of the work has been to elucidate the effect of operating variables on conversion of organic carbon, and the resulting product yield structure (oil/gas). Yields of oil and gas (hydrocarbon and carbon oxide) have been quantified for hydroprocessing under a wide range of operating conditions using both hydrogen donor and pyrolysis oil (non-donor) solvents. The effects of temperature, reaction time, pressure, hydrogen partial pressure, and solvent characteristics on yield structure are described.  相似文献   

13.
《Fuel》2007,86(10-11):1587-1593
Liquefaction of sawdust under syngas was performed in an autoclave and the effects of temperature, initial syngas pressure and reaction time on the product distribution of sawdust liquefaction were studied. The results using different solvents and atmospheres were also compared by product distribution and analyses of GC-MS, TG, IR and GPC. It was found that hydrogen donor solvent showed remarkable effect than either non-hydrogen donor solvent or without presence of solvent and its hydrogenation ability was much higher than gaseous hydrogen. Among various atmospheres H2 displayed higher activity than syngas and both of them were better than Ar and CO, while CO did not give the favorable influence. With increasing temperature and reaction time (10–30 min) the oil yield increases, while less effect with increasing initial syngas pressure. The thermal decomposition of sawdust to form preasphaltene and asphaltene (PA + A) is a fast step, while longer reaction time is necessary for conversion of PA + A to oil as the 2nd step. The results also indicated that syngas can replace hydrogen in sawdust liquefaction.  相似文献   

14.
Thailand’s food manufacturing uses about 47 Million liters per year of vegetable oil. Used vegetable oil is classified as waste, but has potential for conversion into liquid fuel. This research studied the catalytic conversion of used vegetable oil to liquid fuel, where investigation was performed in a batch microreactor over a temperature range of 380–430 °C, initial pressure of hydrogen gas over 10–20 bars, and reaction time of 45–90 minutes. Catalysts such as HZSM-5, Sulfated Zirconia and hybrid of HZSM-5 with Sulfated Zirconia were used to determine the conversion and yield of gasoline fraction. The major products obtained were liquid products, hydrocarbon gases and small amounts of solids. Liquid products were analyzed by simulated distillation gas chromatograph and the product distribution was obtained. Hybrid catalyst HZSM-5 with Sulfated Zirconia showed the highest yield of gasoline with a 26.57 wt% at a temperature of 430 °C, initial hydrogen pressure at 10 bars, and reaction time of 90 minutes in the ratio of hybrid HZSM-5 with Sulfated Zirconia at 0.3: 0.7.  相似文献   

15.
The liquefaction kinetics of Powhatan No.5 mine coal (Pittsburgh Seam) in the presence of SRC-II recycle solvent at short contact times (<10 min) and temperature and pressure ranges of 573–723 K and 10.3–13.8 MPa is examined in a well-mixed reactor. In the initial stages of liquefaction, while overall coal conversion (tetrahydrofuran solubles) increases with temperature, oil (pentane solubles) is lost with an increase in temperature. An increase in solvent-to-coal ratio results in an increase of conversion. The initial coal particle size distribution, total pressure, and nature of gas phase (nitrogen or hydrogen) have no significant effect on the production of any of the product of liquefaction for contact times up to 10 min. A lumped kinetic model is presented to describe the product distribution.  相似文献   

16.
Hydro‐liquefaction of a woody biomass (birch powder) in sub‐/super‐critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473–673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio‐crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4–25.5 wt % and 1.2–17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
以Ni-Mo/Al_2O_3为催化剂,利用1.8 L高压反应釜考察反应温度和氢压对废轮胎液化油加氢转化及脱硫、脱氮效果的影响。结果表明,通过提高反应温度和氢压,可以促进液化油中重组分的转化和硫氮元素的脱除,反应温度和氢压对于脱硫效果影响较明显,而对脱氮效果影响较小。在反应温度410℃、氢压8 MPa和停留时间2 h条件下,重组分全部转化,轻质油收率78%,脱硫率和脱氮率分别达到93.60%和35.63%,其中,汽油馏分中硫、氮含量较低,分别为10.72 mg·L~(-1)和12.04 mg·L~(-1)。  相似文献   

18.
以NNY分子筛和Hβ分子筛为酸性组分,以γ-Al2O3为载体原料、Ni-W为金属组分、P为改性剂,采用较合适的配比利用挤条成型法和等体积饱和浸渍法制备较优的中油型加氢裂化催化剂,并针对此催化剂,在恒压15 MPa条件下,反应温度、空速和氢油体积比的变化对加氢裂化过程中馏分油转化率、产品分布、中油选择性和HDS、HDN效果的影响进行探究。结果表明,随着反应温度升高,转化率增大,产品分布向轻组分偏移,脱硫率和脱氮率增加,但中油选择性降低;随着空速增大,转化率、脱硫率和脱氮率均降低,中油选择性增大;随着氢油体积比增大,转化率、脱硫率和脱氮率先增大后趋于稳定,产品分布和中油选择性基本不变。在反应压力15 MPa、反应温度380 ℃、空速0.7 h-1和氢油体积比1 500∶1条件下,转化率84.6%,中油选择性91.3%,生成油硫含量9.28 μg·g-1,氮含量1.46 μg·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号