首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.  相似文献   

2.
The volatilization of radionuclides during the stabilization/solidification of radioactive wastes at high temperatures is one of the major problems to be considered in choosing suitable wasteforms, process, material systems, etc. This paper reports a novel method to convert volatile wastes into nonvolatile compounds via a sol-gel process, which is different from the conventional method using metal-alkoxides and organic solvents. The material system was designed with sodium silicate (Si) as a gelling agent, phosphoric acid (P) as a catalyst/stabilizer, aluminum nitrate (Al) as a property promoter, and H20 as a solvent. A novel structural model for the chemical conversion of molten salt waste, named RPRM (Reaction Product in Reaction Module), was established, and the waste could be solidified with glass matrix via a simple procedure. The leached fraction of Cs and Sr by a PCT leaching method was 0.72% and 0.014%, respectively. In conclusion, the RPRM model isto converttargetwastes into stable and manageable products, not to obtain a specific crystalline product for each radionuclide. This paper suggested a new stabilization/solidification method for salt wastes by establishing the gel-forming material system and showing a practical example, not a new synthesis method of stable crystalline phase. This process, named "gel-route stabilization/solidification (GRSS)", will be a prospective alternative with stable chemical process on the immobilization of salt wastes and various mixed radioactive waste for final disposal.  相似文献   

3.
No disposal option exists for "mixed wastes" such as paint scrapings that are co-contaminated with polychlorinated biphenyls (PCBs) and radioactive metals. Either removal or destruction of the PCBs is required prior to disposal. Comparison of subcritical water dechlorination (350 degrees C, 1 h) of Aroclor 1254 in paint scrapings (180 ppm) and of standard Aroclor 1254 showed significantly enhanced dechlorination in the presence of paint. While no significant degradation was observed for standard Aroclor (no paint), the dechlorination of PCBs in paint was 99, 99, and 80% for the hepta-, hexa-, and pentachlorinated congeners, respectively, indicating that metals in the paint enhanced the dechlorination reactions. Adding metals to the standard Aroclor (no paint) reactions enhanced PCB dechlorination in subcritical water in descending order of activity: Pb approximately = Cu > Al > Zn > Fe. In the presence of both zerovalent and divalent lead and zerovalent copper in subcritical water (350 degrees C, 1 h), 99% of the Aroclor 1254 mixture (tetra- to heptachlorinated biphenyls) was dechlorinated. High dechlorination (ca. 95%) was also achieved with zerovalent aluminum. In contrast to other metals, lead retained its degradation ability at a lower temperature of 250 degrees C after 18 h. The high degradation efficiency achieved using metal additives in water at reasonable temperatures and pressures demonstrates the potential for subcritical water dechlorination of PCBs in paint scrapings and, potentially, in other solid and liquid wastes.  相似文献   

4.
Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.  相似文献   

5.
Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.  相似文献   

6.
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.  相似文献   

7.
Quantitative scanning electron microscope (SEM) studies of cement-stabilized waste specimens exposed to a leaching solution at constant pH in the range 4-7 have shown that the acid neutralization capacity (ANC) of the waste matrix is consumed at two consecutive leaching fronts. The first front is associated with the dissolution of portlandite (Ca(OH)2) and the partial reaction of calcium silicate hydrate (CSH) gel. The second front marks the dissolution of Ca-Al hydroxy sulfate minerals. The advancement of the first front is limited by the diffusion of OH- ions from the first front toward the leaching solution. The advancement of the second front, however, is controlled by the diffusion of H+ ions from the leaching solution toward the second front. Leaching of copper, zinc, and lead only occurs between the second front and the specimen surface. The leaching behavior of metals is modeled by considering that metals are leached from the waste matrix as a result of the advancement of the second front. The proposed model takes into account the leachable metal fraction in the waste matrix and the effect of metal remineralization on metal mobility.  相似文献   

8.
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. In this study, Co uptake by hardened cement paste (HCP) has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray-absorption spectroscopy (XAS) on powder material (bulk-XAS) was used to determine the local environment of Co in cement systems. Bulk-XAS investigations were complemented with micro-beam investigations to probe the inherent microscale heterogeneity of cement by using micro-X-ray-fluorescence (micro-XRF) and micro-XAS. Micro-XRF was used to gain information on the spatial heterogeneity of the Co distribution, whereas micro-XAS was employed to determine the speciation of Co on the microscale. The Co-doped HCP samples hydrated for time-scales from 1 hour up to 1 year were prepared under normal atmosphere, to simulate similar conditions as for waste packages. To investigate the role of oxygen, further samples were prepared in the absence of oxygen. The study showed that, for the samples prepared in air, Co(II) is oxidized to Co(III) after 1 hour of hydration time. Moreover, the relative amount of Co(III) increases with increasing hydration time. The study further revealed that Co(II) is predominately present as a Co-hydroxide-like phase and/or Co-phyllosilicates, whereas Co(III) tends to be incorporated into a CoOOH-like phase and/or Co-phyllomanganates. In contrast to samples prepared in air, XAS experiments with samples prepared in the absence of oxygen revealed solely the presence of Co(II). This finding indicates that oxygen plays an important role for Co oxidation in cement. Furthermore, the study suggests that Co(III) species or Co(III)-containing phases should be taken into account for an overall assessment of the Co release from Co-containing cement-stabilized waste under oxidizing conditions.  相似文献   

9.
Knowledge on wood natural durability is required in order to be able to decide if we can use a certain type of wood outdoors. For instance, when used outside, oak wood is subjected to the leaching of its water-soluble substances. In this case the resistance of European oak wood is considered to be durable according to the European Standard EN 350-2. However, so far we do not exactly know the real impact of the leaching phenomenon on the resistance of oak wood and the importance of chemical contents. Nevertheless, our study has indicated that some individuals may contain highly durable wood characteristics even after the leaching process (i.e. 33% of very durable wood was still very durable after the leaching test). Chemical analysis has demonstrated that the presence of phenolic compounds are positively correlated with durability. This means that higher proportions of phenol confer higher resistance on wood. After the leaching test, which involves a washout of water soluble compounds, 70% of the trees demonstrate a decline in durability (after the leaching test 75% of the very durable wood dropped to a durable class; whereas, 25% of the wood in the same class still kept their very durable status). This experiment clearly shows the influence of the leaching phenomena and its important role on durability in oak wood. The results show also that 18% of the oak samples could be considered as very durable even after leaching.  相似文献   

10.
Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.  相似文献   

11.
基于全球低碳发展趋势,考察分析1996~2008年间中国食品工业"三废"排放与减排成效,并计算食品工业及分行业的二氧化碳排放,以此利用回归模型验证"三废"减排与碳减排的相关性。结果表明,我国食品工业的"三废"减排与碳减排显著相关,且提高固体废弃物的综合利用率较废水和废气的治理改善更可以显著降低食品工业碳排放。  相似文献   

12.
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.  相似文献   

13.
考察了嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)对废弃印刷电路板(PCBs)中铜回收的影响.由于PCBs添加时间和浓度显著影响菌体生长及铜浸取率,因而通过多点添加PCBs的策略促进铜浸取并减少对细胞生长的抑制.结果表明,PCBs添加量为18 g/L(4 g/L于48 h,6 g/L于96 h和8 g/L于144 h)时,经过240 h培养,铜浸取率达80%,说明该策略有效和可行.  相似文献   

14.
Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings--New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit--were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having approximately 100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCI) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (approximately 78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rockwere heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.  相似文献   

15.
Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter, and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction.  相似文献   

16.
A durable titanate ceramic waste form (Synroc) with pyrochlore (Ca(U,Pu)Ti2O7) and zirconolite (CaZrTi2O7) as major crystalline phases has been considered to be a candidate for immobilizing various high-level wastes containing fissile elements (239Pu and 235U). Transmission electron microscopy study of a sintered ceramic with stoichiometry of Ca(U(0.5)Ce(0.25)Hf(0.25))Ti2O7 shows the material contains both pyrochlore and zirconolite phases and structural intergrowth of zirconolite lamellae within pyrochlore. The (001) plane of zirconolite is parallel to the (111) plane of pyrochlore because of their structural similarities. The pyrochlore is relatively rich in U, Ce, and Ca with respect to the coexisting zirconolite. Average compositions for the coexisting pyrochlore and zirconolite at 1350 degrees C are Ca(1.01)(Ce3+(0.13)Ce4+(0.19)U(0.52)Hf(0.18))(Ti(1.95)Hf(0.05))O7 (with U/(U + Hf) = 0.72) and (Ca(0.91)Ce(0.09))(Ce3+(0.08)U(0.26)Hf(0.66)Ti(0.01))Ti(2.00)O7 (with U/(U + Hf) = 0.28), respectively. A single pyrochlore (Ca(U,Hf)Ti2O7) phase may be synthesized at 1350 degrees C if the ratio of U/(U + Hf) is greater than 0.72, and a single zirconolite (Ca(Hf,U)Ti2O7) phase may be synthesized at 1350 degrees C if the ratio of U/(U + Hf) is less than 0.28. The synthesized products were used for dissolution tests. The single-pass flow-through dissolution tests show that the dissolution of the U-bearing pyrochlore is incongruent. All the elements are released at differing rates. The dissolution data also show a decrease in rate with run time. The results indicate that a diffusion-controlled process may play a key role during the release of U. TEM observation of the leached pyrochlore directly proves that an amorphous leached layer that is rich in Ti and Hf formed on the surface after the ceramic was leached in pH 4 buffered solution for 835 days. The thickness of the layer ranges from 6 to 10 nm. A nanocrystalline TiO2 phase also forms in the leached layer. The U leaching rate (g/(m2 day)) in acidic solutions can be expressed as log(NR) = -5.36-0.20 pH, where NR is the normalized rate. Conservative leaching rates of uranium [log(NR)] for the U-bearing ceramic at pH 2 and pH 4 solutions are -5.76 and -6.16 g/(m2 day), respectively. The results show that the U release rate of the ceramic waste is 10 times slower than that of defense high-level waste glass and about 1000 times slower than that of spent fuel. The pyrochlore-based ceramic is an ideal waste form for immobilizing long-lived radionuclides of 239Pu and 235U due to the Ti- and Hf-rich leached layer that forms on the ceramic surface. The leached layer functions as a protective layer and therefore reduces the leaching rate as thickness of the leached layer increases.  相似文献   

17.
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.  相似文献   

18.
制革废物中铬的测定及其综合处理利用   总被引:3,自引:0,他引:3  
卢基林 《皮革化工》2000,17(3):31-33
采用分光光度法对制革废物中的铬进行了测定。结果严重超标。制革废液和废渣经化学处理和综合利用,得到了氧化铬和红矾钠等回收产品,并基本达到国家允许排放标准。为制革厂的污染防治和废物利用,提供了一种简便有效的方法。  相似文献   

19.
莲子加工过程会产生莲蓬、莲衣、莲子壳、莲子心等废弃物,这些废弃物往往被直接丢弃,而未进一步开发利用,造成了明显的莲资源浪费。由于莲废弃物中含有对人体健康具有促进作用的多酚、生物碱和多糖等多种活性成分,莲废弃物活性成分的开发利用受到了越来越多的关注。目前,常规提取方法和现代提取方法都已被广泛应用于莲废弃物活性成分的提取。与此同时,为了提高提取率,一些新型提取技术也被应用于莲废弃物活性成分的提取并表现出了显著的效果。莲废弃物中的多酚、生物碱和多糖具有抗糖化、抗增殖、抗氧化、抗炎等多种生理活性,但其活性研究主要集中于体外阶段,未来还需要进一步研究其在人体内的功效发挥。本文综述了莲废弃物中主要活性成分的提取方法及其生理活性的研究进展,以期对莲废弃物资源的高附加值开发与利用提供参考。  相似文献   

20.
A thermodynamic Gibbs energy minimization (GEM) solid solution-aqueous solution (SSAS) equilibrium model was used to determine the solubility of Zn from calcium silicate hydrate (CSH) phases doped with 0, 0.1, 1, 5, and 10% Zn at a unity (Ca+Zn)/Si molar ratio. Both the stoichiometry and standard molar Gibbs energy (G(o)298) of the Zn-bearing end-member in the ideal ternary Zn-bearing calcium silicate hydrate (CZSH) solid solution were determined by a "dual-thermodynamic" (GEM-DT) estimation technique. The SSAS model reproduces a complex sequence of reactions suggested to occur in a long-term weathering scenario of cementitious waste forms at subsurface repository conditions. The GEM model of CZSH leaching at several Zn loadings and solid/water (s/w) ratios in a C02-free system showed that, upon complete dissolution of portlandite and calcium zincate phases at decreasing s/w < 0.01 mol x kg(H2O)(-1), the total dissolved concentrations Si(aq), Ca(aq), and Zn(aq) are controlled by a CZSH solid solution of changing composition, with a trough-like Znaq drop by 2-3 orders of magnitude. Carbonation was simulated in another GEM model run series by CO2 titration of the system with initial s/w approximately 0.9 mol/kg(H2O). Formation of (Ca,Zn)-CO3 nonideal solid solution was predicted already at early reaction stage in the presence of both portlandite and calcium zincate hydrate phases. Upon their disappearance, pH, Zn(aq), C(aq), and fCO2 were predicted to change due to the incongruent dissolution of two concurrent CZSH-I and CZSH-II solid solutions, until the total re-partitioning of Ca and Zn into a carbonate solid solution coexisting with amorphous silica at fCO2 > 0.1 bar. Along this solid-phase transition, dissolved Zn(aq) concentrations follow a highly nonlinear trend. The model results predict that at low to moderate Zn loading (< or = 1% per mole Si), CZSH-type compounds can efficiently immobilize Zn in the near field of a cement-stabilized waste repository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号