首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent evidence links elevated ultrafine particle (UFP) concentrations with adverse health effects, but exposure assessments based upon PM 2.5 mass concentrations may be misleading. In order to better understand and quantify intra-community variability in UFP concentrations, a dense network of 14 monitoring sites was set-up in Los Angeles in two clusters—San Pedro/Wilmington and West Long Beach—in communities surrounding the Ports of Los Angeles and Long Beach. The network measured total particle number concentrations greater than 7 nm in diameter. In this range, UFP comprise approximately 90% of the total. Port-related activities—particularly goods movement associated with high volumes of heavy-duty diesel vehicle (HDDV) traffic—represent significant UFP sources. The field study was conducted from mid-February through mid-December 2007 to assess diurnal, seasonal, and spatial patterns and intra-community variability in total particle number concentrations. For sites within a few km of each other, simultaneous particle number concentrations can vary up to a factor of 10 (< 10,000 cm?3 up to 90,000 cm?3 for hourly averages calculated by month). The median hourly correlation coefficient (r) across all sites was modest and varied from 0.3 to 0.56. Specific site locations, particularly proximity to roadways used for goods movement, strongly affect observations. Clear diurnal and seasonal patterns are evident in the data. A diurnal pattern associated with high HDDV volumes and goods movement was identified. Coefficients of Divergence calculated for the site pairs suggest moderate heterogeneity overall (median study COD ≈ 0.35). The intra-urban variability observed in this study is comparable to and exceeds the inter-urban variability observed in a previous study in Los Angeles. UFP concentrations can vary considerably on short spatial scales in source-rich environments strongly influencing the accuracy of exposure assessments.  相似文献   

2.
Ambient concentrations of 15 vapor-and particle-phase (PM 2.5 ) polycyclic aromatic hydrocarbons (PAHs), listed by the US EPA as priority pollutants, were measured between July 2002 and November 2003 in six Southern California communities participating in a multi-year chronic respiratory health study of schoolchildren. The communities were geographically distributed over two hundred kilometers, extending from Long Beach in coastal Los Angeles, to high mountain areas to the north and west of the Los Angeles basin, and south into Eastern San Diego County. Seasonal and spatial variation in the atmospheric concentrations of PAHs is of interest because this class of compounds includes potent mutagens, carcinogens, and species capable of generating reactive oxygen species (ROS) that may lead to oxidative stress. Naphthalene accounted for 95% of the total PAH mass; annual averages ranged from 89 to 142 ng m ? 3 . Benzo[ghi]perylene (BGP) and the pro-carcinogen benzo[a]pyrene (BAP), present almost exclusively in the particle-phase, ranged respectively from 38 to 231 pg m ?3 and 75 and 111 pg m ? 3 , with the highest values observed in Long Beach, a community with a high volume of seaport-related activities, and Lancaster, a commuter dormitory community. A considerable increase in the particle-phase PAH concentration, relative to the vapor-phase, was observed as ambient temperature decreased. Cold/hot season ratios for PAHs in PM 2.5 averaged 5.7, reaching 54 at Long Beach. The presented data underscore the importance of seasonal variations on atmospheric PAH concentrations. These observations are relevant to future interpretation and analysis of community-scale human health effects research.  相似文献   

3.
Fifteen priority polycyclic aromatic hydrocarbons (PAHs) were measured in two rural communities (Atascadero and Lompoc) located several hundred km northwest of Los Angeles and in four urban communities 40–100 km downwind of Los Angeles (San Dimas, Upland, Mira Loma, and Riverside), during all seasons, from May 2001 to July 2002. PM2.5 and vapor-phase PAHs were collected, on prebaked quartz fiber filters and PUF-XAD-4 resin, respectively, at 113 LPM, during 24 h periods, every eighth day, and quantified by HPLC-Fluorescence. At all sites vapor-phase PAHs contained > 99.9% of the total PAH mass and were dominated by naphthalene (NAP), which varied from about 60 ng m ? 3 in Lompoc, a community with light traffic, to ~580 ng m ? 3 in Riverside, a community traversed by ~200,000 vehicles day? 1. During summer pollution episodes in urban sites, NAP concentrations reached 7–30 times annual averages. Except for summer episodes, concentrations of low MW PAHs showed small seasonal variations (~2 times higher in winter). Similar concentrations of particle-phase PAHs were observed at all sites except for Lompoc. Benzo[ghi]perylene (BGP), a marker of gasoline exhaust emissions, showed the highest concentration among particle-phase PAHs, varying from 23.3 pg m?3 in Lompoc to 193 pg m?3 in Mira Loma. Benzo[a]pyrene and indeno[1,2,3-cd]pyrene, found exclusively in the particle phase, were much higher in urban sites (40–100 pg m?3), than in Lompoc (~12 pg m?3). Winter particle-phase PAHs were 2 to 14 times higher than summer levels. Particle-phase PAHs were negatively correlated with mean air temperature in urban sites (r = ?0.50 to ?0.75), probably resulting from surface inversions occurring during winter. The data suggest that in Southern California vehicular exhaust emissions are a major contributor to particle-phase PAHs.  相似文献   

4.
The objective of this study was to quantify, size, and examine the composition of particulates found in ambient aerosolized dust of four large feedyards in the Southern High Plains. Ambient air samples (concentration of dust) were collected upwind (background) and downwind of the feedyards. Aerosolized particulate samples were collected using high volume sequential reference ambient air samplers, PM 10 and PM 2.5 , laser strategic aerosol monitors, cyclone air samplers, and biological cascade impactors. Weather parameters were monitored at each feedyard. The overall (main effects and estimable interactions) statistical (P < 0.0001) general linear model statement (GLM) for PM 10 data showed more concentration of dust (μg/m 3 of air) downwind than upwind and more concentration of dust in the summer than in the winter. PM 2.5 concentrations of dust were comparable for 3 of 4 feedyards upwind and downwind, and PM 2.5 concentrations of dust were lower in the winter than in the summer. GLM (P < 0.0001) data for cascade impactor (all aerobic bacteria, Enterococcus spp, and fungi) mean respirable and non-respirable colony forming units (CFU) were 676 ± 74 CFU/m 3 , and 880 ± 119 CFU/m 3 , respectively. The PM 10 geometric mean size (±GSD) of particles were analyzed in aerosols of the feedyards (range 1.782 ± 1.7 μm to 2.02 ± 1.74μm) and PM 2.5 geometric mean size particles were determined (range 0.66 ± 1.76 μm to 0.71 ± 1.71 μm). Three of 4 feedyards were non-compliant for the Environmental Protection Agency (EPA) concentration standard (150 μg/m 3 /24 h) for PM 10 particles. This may be significant because excess dust may have a negative impact on respiratory disease.  相似文献   

5.
The concentrations of trace metals and elements in the coarse fraction of atmospheric particulate matter (CPM, particles smaller than 10 and larger than 2.5 μm in diameter, PM10–2.5) and their spatial and temporal trends were investigated in the greater Los Angeles area. Ten distinct sampling sites were chosen to encompass a variety of CPM sources, including urban, rural, coastal, inland, and near-freeway sites. Time-integrated 24-h CPM samples were collected at each location once a week, for an entire year, from April 2008 to March 2009, to characterize drivers of the seasonal and spatial patterns of the CPM trace metal content. Metals were quantified using sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS).

Trace metals in CPM displayed distinct seasonal and temporal variations, and a principal component analysis (PCA) was performed to aid the identification of the CPM sources underlying these variations. The probable sources of each principal component were identified using elemental tracers. Major sources of CPM metals and elements identified were crustal and mineral matter, abrasive vehicular emissions, industrial, sea spray, and catalytic converters, explaining more than 80% of the total variance of CPM metal content. Mineral and crustal elements, most notably Fe, Ca, Al, Mg, K, Ti, and Mn, were the main contributors to the overall CPM mass, accounting for over 33% of the total variance, followed by abrasive vehicular markers such as Cu, Ba, and Sb, accounting for over 16% of the variance, with an increasing contribution in the urban sites. Temporal and spatial variations in each identified class of CPM sources were also investigated.  相似文献   

6.
The concentration and composition of PM 2.5 from May to September of 2000 and monthly trends in ambient fine-particulate material concentrations from October 1999 through December 2000 at the National Energy Technology Laboratory's airmonitoring site in Pittsburgh are reported. Twenty four-hour integrated samples were collected using the Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), a multichannel integrated diffusion denuder sampler designed for routine determination of the chemical composition of ambient particulate matter. The fine-particulate pollutants determined were sulfate estimated as ammonium sulfate, nonvolatile organic material, semivolatile organic material lost from particles during sampling, elemental carbon, nitrate estimated as ammonium nitrate, including ammonium nitrate lost from particles during sampling and elemental content determined by PIXE (for a limited number of samples). Episodes with elevated sulfate and organic material (both semivolatile and nonvolatile) concentrations were seen throughout this period. For the purpose of this discussion, an episode was defined as all times when 3 h average TEOM monitor PM 2.5 concentrations exceeded 30 μg/m3. The use of estimated back-trajectories indicated that during the periods for which these elevated concentrations were observed, pollutants were transported predominantly from the Southwest from the Ohio River Valley to the sampling site. For days when fine particulate episodes occurred, back-trajectory computations were derived for time intervals for which PM 2.5 TEOM concentrations exceeded 30 μg/m3. However, for nonepisode days, back trajectories were computed over a 24 h period. Average PC-BOSS–constructed PM 2.5 concentration (including semivolatile components lost from particles during sampling) for the period from October 1999 through December 2000 was 19 μg/m 3 , excluding crustal material concentration.  相似文献   

7.
The Los Angeles Aerosol Characterization and Source Apportionment Study (LA-ACSAS) is a decade-long laboratory and field study undertaken by the Southern California Edison Company (SCE) to characterize the chemical composition of fine (d p < 3.5 μm) particles, PM3,5, in the Los Angeles Basin, in terms of sulfate, nitrate, organic compounds and trace metals and apportion their sources. This paper provides an overview of the study results and summarizes the important conclusions regarding the composition and sources of PMJS in the Los Angeles Basin, especially regarding the organic fraction.  相似文献   

8.
A one-year (from June 2003 to May 2004) study of airborne microbial concentration and size distribution was conducted systematically at three selected sampling sites in Beijing. Microbial samples were collected in triplicate for 3 min, 3 times per day, for 3 consecutive days of each month using FA-I sampler (imitated Andersen sampler, made by Applied Technical Institute of Liaoyang, China). Results showed that the concentration of total culturable microorganisms ranged from 4.8 × 10 2 colony forming units (CFU)/m 3 to 2.4 × 10 4 CFU/m 3 , with an arithmetic mean of 3.7 × 10 3 ± 2.1 × 10 2 (standard deviation) CFU/m 3 . As a whole, the percentage of airborne bacteria, accounting for 59.0% of the total culturable microorganisms, was significantly higher than those of airborne fungi (35.2%) and actinomycetes (5.8%). At RCEES (Research Center for Eco-Environmental Sciences—a culture and education area) and XZM (Xizhimen—a main traffic line), significantly higher percentages of airborne bacteria were found as compared to airborne fungi. No significant difference was observed between airborne bacteria and fungi at BBG (Beijing Botanical Garden—a green garden area). The total microbial concentration was significantly higher at RCEES than at XZM and BBG (*P < 0.05), and no significant difference between XZM and BBG was observed (P > 0.05). Total microbial concentrations were higher in summer and autumn, and lower in spring and winter at RCEES and XZM (*P < 0.05). At BBG, higher concentration was observed in summer during the sampling periods (***P < 0.001). The size distribution of airborne bacteria showed a skewed distribution at three sampling sites. The proportion of bacterial particles decreased gradually from Stage 1 ( > 7.0 μm) to Stage 6 (0.65 ~ 1.1 μm), and there was an obvious downtrend on Stage 2 (4.7 ~ 7.0 μm). Bacterial particles were mainly distributed at the first four Stages ( > 2.1 μm), accounting for 78.6% at RCEES, 84.0% at XZM, and 81.5% at BBG. The size distribution pattern of airborne fungi was found with normal logarithmic distribution at three sampling sites. Fungal particles were mainly distributed at Stage 3 (3.0 6.0 μ m), Stage 4 (2.0 3.5 μ m) and Stage 5 (1.0 2.0 μ m), composing 71.6% of the population at RCEES, 74.2% at XZM, and 68.3% at BBG. However, different distribution patterns were found in different dominant fungal genera. Cladosporium, Penicillium, and Aspergillus were present with normal logarithmic distribution, while Alternaria and sterile mycelia were found with skewed distribution. In opposition to the distribution pattern of fungal particles, the actinomycete particles at all sampling sites were primarily collected on Stage 1, Stage 5, and Stage 6, accounting for 61.1% at RCEES, 60.7% at XZM, and 64.8% at BBG.  相似文献   

9.

Highly time-resolved measurements of PM2.5, its major constituents, particle size distributions (9 nm to 20 μ m), CO, NO/NO2, and O3, and meteorological parameters were made from February through November 2002, at the Baltimore Supersite at Ponca St. using commercial and prototype semi-continuous instruments. The average PM2.5 mass concentration during the study period was 16.9 μ g/m3 and a total of 29 PM2.5 pollution episodes, each in which 24-h averaged PM2.5 mass concentrations exceeded 30.0 μ g/m3 for one or more days, were observed. Herein, 6 of the worst episodes are discussed. During these events, PM2.5 excursions were often largely due to elevations in the concentration of one or two of the major species. In addition, numerous short-term excursions were observed and were generally attributable to local sources. Those in OC, EC, nitrate, CO, and NOx levels were often observed in the morning traffic hours, particularly before breakdown of nocturnal inversions. Moreover, fresh accumulation aerosols from local stationary combustion sources were observed on several occasions, as evidenced by elevations in elemental markers when winds were aligned with sources resulting in PM2.5 increments of 17 μ g/m3. Overall, the results described herein show that concentrations of PM2.5 and its major constituents vary enormously on time scales ranging from < 1 hr to several days, thus imposing a more highly complex pattern of pollutant exposure than can be captured by 24-hr integrated methods, alone. The data suggest that control of a limited number of local sources might achieve compliance with daily and annual PM2.5 standards.  相似文献   

10.

Daily mass concentrations of PM 1.0 (particles less than 1.0 μm in diameter), PM 2.5 (particles less than 2.5 μm in diameter), organic carbon (OC), and elemental carbon (EC) were measured from January through May 2004 at a heavily trafficked sampling site in Hong Kong (PU). The average concentrations for PM 1.0 and PM 2.5 were 35.9 ± 12.4 μ g cm ? 3 and 52.3 ± 18.3 μ g cm ? 3 . Carbonaceous aerosols were the dominant species in fine particles, accounting for 45.7% of PM 1.0 and 44.4% of PM 2.5 . During the study period, seven fine-particle episodes occurred, due to the influence of long-range transport of air masses from mainland China. PM 1.0 and PM 2.5 responded in similar ways; i.e., with elevated mass and OC concentrations in those episode days. During the sampling period, PM 1.0 OC and EC generally behaved similarly to the carbonaceous aerosols in PM 2.5 , regardless of seasonal variations and influence by regional pollutions. The low and relatively constant OC/EC ratios in PM 1.0 and PM 2.5 indicated that vehicular emissions were major sources of carbonaceous aerosols. PM 1.0 and PM 2.5 had the same dominant sources of vehicular emissions in winter, while in spring PM 2.5 was more influenced by PM 1 ? 2.5 (particles 1–2.5 μ m in diameter) that did not form from vehicle exhausts. Therefore, PM 1.0 was a better indicator for vehicular emissions at the Roadside Station.  相似文献   

11.
PM2.5 surface concentrations were measured in smoke emitted by four wildfire events during fire seasons 2005–2008. These measurements fill a gap in the existing scientific PM2.5 observation database by providing a targeted wildfire-specific observation dataset. Four deployments occurred during various fire types including a managed-for-fuel-treatment wildfire complex, a wildfire complex, and two regional fire events. The maximum 24-h averaged values for each case were: 94.5 μg/m3 (2005), 425 μg/m3 (2006), 118 μg/m3 (2007), and 247 μg/m3 (2008). While these values are high, the diurnal concentration median and first quartile values remain below 35 and 10 μg/m3, respectively. For all cases, the hourly diurnal patterns exhibit peak concentrations in the mid-morning and low concentrations in the mid-afternoon. Correlations between daily area actively burning and observed PM2.5 concentrations were significant for all cases and concentration patterns were found to be similar by geographic location rather than by type of fire (single vs. region-wide). Multiple co-located monitor types, the Environmental Proof Beta Attenuation Monitor, which measures PM2.5 concentrations using a beta-beam aimed at particulates collected on filter tape, and the E-SAMPLER and DataRAM, which both use nephelometry to measure PM2.5 concentrations, showed statistically good agreement.  相似文献   

12.
Ambient ultrafine particles (UPs or PM 0.1 ), PM 2.5 and PM 10 were investigated at the roadside of Syuefu road in Hsinchu city and in the Syueshan highway tunnel in Taipei, Taiwan. A SMPS (TSI Model 3936), three Dichotomous samplers (Andersen Model SA-241), and three MOUDIs (MSP Model 110) were collocated to determine the PM number and mass concentrations simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions, and trace elements. The OC artifact was studied and quantified using the quartz behind quartz (QBQ) method for all PM fractions. Taking into account the OC artifact, chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass) of PM 0.1 , PM 2.5 , and PM 10 was then calculated and found to be good. The chemical analysis results of UPs at both sites showed that UPs in the present tunnel was mostly contributed from the vehicle emissions while UPs at the roadside was mainly influenced by urban sources.  相似文献   

13.

The levels of PM 10 , PM 2.5 , and NO 2 were studied at a kerbsite and ambient site in Mumbai. Measurements were also made for eight inorganic ions (F ? , Cl ? , NO 3 ? , SO 2? 4 , Na + , K + , NH 4 + , Ca 2+ , and Mg 2+ ) in the PM 2.5 fraction. During the study period, PM 2.5 , PM 10 and NO 2 levels ranged between 11–91, 18–125, and 8–64 μ g m ? 3 at a ambient site whereas at the kerbsite the ranges were 10–176, 21–189, and 4–55 μ g m ?3 respectively. Average PM 2.5 values were 42 μ g m ? 3 at ambient and 69 μ g m ?3 at the kerbsite. The measured ions accounted for about 50% of the PM 2.5 mass. Non-sea-salt (nss) sulfate contributed 91% and 85% of the ionic mass at the ambient and kerbsite sites respectively. Due to biomass sources of K, only about 5% of K + was from seas salt. The average equivalent ratio of NH 4 + to nss- SO 2 4 ? , and NO 3 ? was over 1, indicating high source strength of ammonia.  相似文献   

14.
A high loading sampler for the chemical characterization of fine particles (PM 2.5 ) was developed and validated through laboratory and field experiments. This speciation sampler consists of two identical serially connected impaction stages to remove particles larger than 2.5 μm, following by a chamber to allow use of one or two all-glass honeycomb diffusion denuders, and a holder for a 47 mm filter. Two configurations of the sampler allow sampling at flows of 10 lpm and 16.7 lpm. System performance was evaluated in laboratory experiments using artificially generated polydisperse aerosols. This novel sampler provides a much larger mass loading capacity than previous impactors that use flat, rigid substrate surfaces. The polyurethane foam (PUF) substrate maintains adequate performance characteristics (retention of size cut-off, sharpness of cut-off curve, and minimal particle bounce and re-entrainments) at loadings of at least 35 mg. This is equivalent to 728 μg/m3 for a 48 h sampling period (or 500 h of sampling at 70 μg/m3). System performance was also evaluated in a series of field intercomparison experiments for both flow configurations (10 and 16.7 lpm). Measurements of PM 2.5 mass and sulfate concentrations showed excellent agreement between the US EPA Federal Reference Method (FRM) Sampler and the speciation sampler.  相似文献   

15.
A novel optical instrument has been developed that estimates size segregated aerosol mass concentration (i.e., PM 10 , PM 4 , PM 2.5 , and PM 1 ) over a wide concentration range (0.001–150 mg/m 3 ) in real time. This instrument combines photometric measurement of the particle cloud and optical sizing of single particles in a single optical system. The photometric signal is calibrated to approximate the PM 2.5 fraction of the particulate mass, the size range over which the photometric signal is most sensitive. The electrical pulse heights generated by light scattering from particles larger than 1 micron are calibrated to approximate the aerodynamic diameter of an aerosol of given physical properties, from which the aerosol mass distribution can be inferred. By combining the photometric and optical pulse measurements, this instrument can estimate aerosol mass concentrations higher than typical single particle counting instruments while providing size information and more accurate mass concentration information than traditional photometers. Experiments have shown that this instrument can be calibrated to measure aerosols with very different properties and yet achieve reasonable accuracy.  相似文献   

16.
Daily mass concentrations of water-soluble inorganic (WS-i) ions, organic carbon (OC), and elemental carbon (EC) were determined for fine particulate matter (PM1, particles < 1.0 μm in diameter) collected at Xi'an, China. The annual mean PM1 mass concentration was 127.3 ± 62.1 μg m–3: WS-i ions accounted for ~38% of the PM1 mass; carbonaceous aerosol was ~30%; and an unidentified fraction, probably mostly mineral dust, was ~32%. WS-i ions and carbonaceous aerosol were the dominant species in winter and autumn, whereas the unidentified fraction had stronger influences in spring and summer. Ion balance calculations indicate that PM1 was more acidic than PM2.5 from the same site. PM1 mass, sulfate and nitrate concentrations followed the order winter > spring > autumn > summer, but OC and EC levels were higher in autumn than spring. Annual mean OC and EC concentrations were 21.0 ± 12.0 μg m?3 and 5.1 ± 2.7 μg m–3 with high OC/EC ratios, presumably reflecting emissions from coal combustion and biomass burning. Secondary organic carbon, estimated from the minimum OC/EC ratios, comprised 28.9% of the OC. Positive matrix factorization (PMF) analysis indicates that secondary aerosol and combustion emissions were the major sources for PM1.  相似文献   

17.
Ambient suspended particulates in an area abutting a highway were gathered using a Partisol Model 2300 Speciaton Sampler (RP2300). Major ionic species with different particle sizes and with possible sources close to the sampling site were evaluated using Principal Component Analysis (PCA). Observational results indicate that average PM2.5 and PM10 concentrations were 66.33 and 108.28 μg/m3, respectively. The average ratio of PM2.5/PM10 was 62% at this sampling site, whereas the average PM2.5/PM10 ratio in this study was less than those in urban (Seoul, Korea), suburban (Basel, Switzerland) and rural (Chaumont, Switzerland) settings. Average concentrations for ionic species of NO3, SO42− and NH4+ were 10.46, 12.63 and 7.87 μg/m3 in PM2.5, respectively. Average concentrations for ionic species of NO3, SO42− and NH4+ were 17.28, 15.59 and 9.48 μg/m3 in PM10, respectively. Principal component analysis identified soil, secondary aerosols and marine salt as possible major pollutant sources at this sampling site.  相似文献   

18.
A comparison between the filter-based, laboratory ion chromatography technique and a semi-continuous analyzer (URG 9000B Ambient Ion Monitor [AIM]) was conducted to evaluate the performance of the AIM in measuring the concentrations of the main airborne ionic species in PM10. The study was carried out in an urban background area of London (UK) in 2013. The two methods showed an overall good correlation (R2 > 0.83) for nitrate, sulfate, chloride, ammonium, and magnesium and poor correlation was found for sodium, potassium, and calcium (R2 < 0.50). The AIM gave consistently higher concentrations for sodium and potassium, possibly due to a positive bias within the sampling unit. During high concentration episodes, both the efficiency of the particle extraction and removal of gases by the denuder may be reduced. A HEPA filter test demonstrated that the denuder was removing gaseous components effectively but that there was some potential for contamination. Overall, the AIM was found to be a good instrument for measuring hourly anion and cation concentrations in PM10 in urban sites.

Copyright 2015 American Association for Aerosol Research  相似文献   

19.

The size and composition of ambient airborne particulate matter is reported for winter conditions at five locations in (or near) the San Joaquin Valley in central California. Two distinct types of airborne particles were identified based on diurnal patterns and size distribution similarity: hygroscopic sulfate/ammonium/nitrate particles and less hygroscopic particles composed of mostly organic carbon with smaller amounts of elemental carbon. Daytime PM10 concentrations for sulfate/ammonium/nitrate particles were measured to be 10.1 μ g m?3, 28.3 μ g m?3, and 52.8 μ g m?3 at Sacramento, Modesto and Bakersfield, California, respectively. Nighttime concentrations were 10–30% lower, suggesting that these particles are dominated by secondary production. Simulation of the data with a box model suggests that these particles were formed by the condensation of ammonia and nitric acid onto background or primary sulfate particles. These hygroscopic particles had a mass distribution peak in the accumulation mode (0.56–1.0 μ m) at all times. Daytime PM10 carbon particle concentrations were measured to be 9.5 μ g m?3, 15.1 μ g m?3, and 16.2 μ g m?3 at Sacramento, Modesto, and Bakersfield, respectively. Corresponding nighttime concentrations were 200–300% higher, suggesting that these particles are dominated by primary emissions. The peak in the carbon particle mass distribution varied between 0.2–1.0 μ m. Carbon particles emitted directly from combustion sources typically have a mass distribution peak diameter between 0.1–0.32 μ m. Box model calculations suggest that the formation of secondary organic aerosol is negligible under cool winter conditions, and that the observed shift in the carbon particle mass distribution results from coagulation in the heavily polluted concentrations experienced during the current study. The analysis suggests that carbon particles and sulfate/ammonium/nitrate particles exist separately in the atmosphere of the San Joaquin Valley until coagulation mixes them in the accumulation mode.  相似文献   

20.
The electronic cigarette (EC) is a new source of indoor airborne particles. To better understand the impacts of secondhand vaping (SHV) emissions on indoor air quality, real-time measurements of particle size distribution, particle number concentration (PNC), fine particulate matter (PM2.5), CO2, CO, and formaldehyde were conducted before, during, and after 10 min EC-use among 13 experienced users in an 80 m3 room. To assess particle transport in the room, multiple sampling locations were set up at 0.8, 1.5, 2.0, and 2.5 m away from the subjects. The arithmetic mean (standard deviation) of background PNC and PM2.5 concentrations in the room were 6.39 × 103 (1.58 × 102) particles/cm3 and 8 (1) μg/m3, respectively. At 0.8 m away from EC users, right after initiation of puffing, the PNC and PM2.5 concentrations can reach a peak of ~105 particles/cm3 and ~3 × 103 µg/m3, respectively, and then dropped quickly to background levels within 20 s due to dilution and evaporation. At the 0.8 m sampling location, the mean PNC and PM2.5 concentrations during puffing were 2.48 × 104 (2.14 × 104) particles/cm3 and 188 (433) µg/m3, respectively. In addition, two modes of SHV particles were observed at about 15 and 85 nm. Moreover, concentrations of SHV particles were negatively correlated with the distances to EC users. At the 1.5 m location, PNC and PM2.5 levels were 9.91 × 103 (1.76 × 103) particles/cm3 and 19 (14) µg/m3, respectively. Large variations of mean PNC levels exhaled per puff were observed both within and between EC users. Data presented in this study can be used for SHV particle exposure assessment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号