首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.

Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided.

  相似文献   

2.
A fine particulate matter (PM2.5) monitoring network of filter-based federal reference methods and federal equivalent methods (FRM/FEMs) is used to assess local ambient air quality by comparison to National Ambient Air Quality Standards (NAAQS) at about 750 sites across the continental United States. Currently, FRM samplers utilize polytetrafluoroethylene (PTFE) filters to gravimetrically determine PM2.5 mass concentrations. At most of these sites, sample composition is unavailable. In this study, we present the proof-of-principle estimation of the carbonaceous fraction of fine aerosols on FRM filters using a nondestructive Fourier transform infrared (FT-IR) method. Previously, a quantitative FT-IR method accurately determined thermal/optical reflectance equivalent organic and elemental carbon (a.k.a., FT-IR organic carbon [OC] and elemental carbon [EC]) on filters collected from the chemical speciation network (CSN). Given the similar configuration of FRM and CSN aerosol samplers, OC and EC were directly determined on FRM filters on a mass-per-filter-area basis using CSN calibrations developed from nine sites during 2013 that have collocated CSN and FRM samplers. FRM OC and EC predictions were found to be comparable to those of the CSN on most figures of merit (e.g., R2) when the type of PTFE filter used for aerosol collection was the same in both networks. Although prediction accuracy remained unaffected, FT-IR OC and EC determined on filters produced by a different manufacturer show marginally increased prediction errors suggesting that PTFE filter type influences extending CSN calibrations to FRM samples. Overall, these findings suggest that quantifying FT-IR OC and EC on FRM samples appears feasible.

© 2018 American Association for Aerosol Research  相似文献   


3.

The chemical, physical, and morphological complexity of atmospheric aerosol elemental carbon (EC) presents major problems in assuring measurement accuracy. Since EC and black carbon are often considered equivalent, methods based on thermal-optical analysis (TOA) are widely used for EC in ambient air samples because no prior knowledge of the aerosol's absorption coefficient is required. Nevertheless, different TOA thermal desorption protocols result in wide EC-to-total-carbon (TC) variation. We created three response surfaces with the following response variables: EC/TC, maximum laser attenuation in the He phase ( L max ), and laser attenuation at the end of the He phase ( L He4 ). A two-level central-composite factorial design comprised of four factors considered the temperatures and durations of all desorption steps in TOA's inert (He) phase and the initial step in TOA's oxidizing (O 2 -He) phase. L max was used to assess the positive bias caused by nonvolatile unpyrolized organic carbon (OC char) being measured as native EC. A negative bias that the attenuated laser response does not detect is caused by the loss of native EC in the He phase. L He4 was used as a surrogate indicator for the loss of native EC in the He phase. The intersection between the L max and L He4 surfaces revealed TOA conditions where both the production of OC char in the He phase was maximized and the loss of native EC in the He phase was minimized, therefore leading to an optimized thermal desorption protocol. Based on the sample types used in this study, the following are generalized optimal conditions when TOA is operated in the fixed-step-durations, laser-transmission mode (i.e., TOT): step 1 in He, 190°C for 60 s; step 2 in He, 365°C for 60 s; step 3 in He, 610°C for 60 s; step 4 in He, 835°C for 72 s. For steps 1-4 in O 2 -He, the conditions are 550°C for 180 s, 700°C for 60 s, 850°C for 60 s, and 900°C for 90 s to 120 s, respectively.  相似文献   

4.
The Sunset Laboratory Carbon Aerosol Analysis Lab Instrument is widely used for thermal-optical analysis (TOA) of ambient particulate matter samples to measure total carbon (TC), organic carbon (OC), and elemental carbon (EC), and often thermal sub-fractions of OC and EC. TOA operating protocols include a series of plateau temperatures at which the thermal sub-fractions evolve. The temperatures have conventionally been measured by a sensor located in the sample oven but away from the filter sample. However, the TOA protocol used by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and recently adopted by the U.S. Environmental Protection Agency (EPA) Speciation Trends Network (STN) and Chemical Speciation Network (CSN) specify temperatures to be achieved at the filter. Our goal was to develop a simple calibration method to obtain the target filter temperatures in a Sunset Instrument. This method showed good agreement with the IMPROVE/STN/CSN method and has the advantages of not damaging oven components and of providing a direct comparison of sample oven sensor and filter temperatures at the TOA protocol-specified temperatures. Calibrations performed on four Sunset Instruments yielded different sensor/filter temperature relationships. Ambient PM 2.5 samples analyzed using IMPROVE_A temperatures at the oven sensor compared to IMPROVE_A temperatures at the filter yielded statistically insignificant differences for TC, OC, and EC but statistically significant differences for the carbon sub-fraction concentrations. Temperature calibrations should be performed on each Sunset Instrument to ensure comparability in the carbon sub-fractions being reported, and a simple method has been provided for performing these calibrations.  相似文献   

5.
We introduce a new method to estimate the mass concentration of particulate organic carbon (POC) collected on quartz filters, demonstrating it using quartz-filter samples collected in greater Pittsburgh. This method combines thermal-optical organic carbon and elemental carbon (OC/EC) analysis and the volatility basis set (VBS) to quantify the mass concentration of semi-volatile POC on the filters. The dataset includes ambient samples collected at a number of sites in both summer and winter as well as samples from a highway tunnel. As a reference we use the two-filter bare-Quartz minus Quartz-Behind-Teflon (Q-QBT) approach to estimate the adsorbed gaseous fraction of organic carbon (OC), finding a substantial fraction in both the gas and particle phases under all conditions. In the new method we use OC fractions measured during different temperature stages of the OC/EC analysis for the single bare-quartz (BQ) filter in combination with partitioning theory to predict the volatility distributions of the measured OC, which we describe with the VBS. The effective volatility bins are consistent for data from both ambient samples and primary organic aerosol (POA)-enriched tunnel samples. Consequently, with the VBS model and total OC fractions measured over different heating stages, particulate OC can be determined by using the BQ filter alone. This method can thus be applied to all quartz filter-based OC/EC analyses to estimate the POC concentration without using backup filters.

© 2016 American Association for Aerosol Research  相似文献   


6.
Fourier transform infrared spectroscopy (FT-IR) has been used to predict elemental carbon (EC) on polytetrafluoroethylene (PTFE) filter samples from the United States Environmental Protection Agency's Chemical Speciation Network (CSN). This study provides a proof-of-principle demonstration of using multilevel modeling to determine thermal/optical reflectance (TOR) equivalent EC (a.k.a., FT-IR EC) on PTFE samples collected in the CSN. Initially, spectra from nine geographically disperse sites were pooled and calibrated directly to collocated TOR EC measurements. The FT-IR EC quantified in test samples was deemed substandard when judged against an earlier study, e.g., R2 = 0.760 and median absolute deviation (MAD) = 26.7%. Upon scrutinizing each sample's absolute prediction error and squared Mahalanobis distance, Elizabeth, NJ predictions were found to exhibit atypical systematic errors, motivating the development of a multilevel classification and calibration procedure. Atypical Elizabeth spectra were distinguished from the (typical) CSN spectra by training a partial least-square discriminant analysis. Predicting EC using calibrations dedicated to either atypical or typical samples produced a satisfactory improvement in overall performance (R2 = 0.886, MAD = 19.8%). Analysis of the atypical FT-IR spectra and select TOR thermal fractions suggested that Elizabeth samples contained elevated levels of diesel particulate matter as evidenced by the use of organic nitrogen functional groups for prediction, very low average OC/EC, and minimal charring during TOR speciation. FT-IR EC from the other eight sites was predominately determined by aliphatic C-H, C = C aromatic, and functional groups associated with oxidation. This study provides preliminary confirmation that FT-IR EC may be accurately determined from source-oriented calibrations under a combined classification and calibration methodology.

Copyright © 2018 American Association for Aerosol Research  相似文献   


7.

Measurement methods for fine carbonaceous aerosol were compared under field sampling conditions in Flushing, New York during the period of January and early February 2004. In-situ 5- to 60-minute average PM 2.5 organic carbon (OC), elemental carbon (EC), and black carbon (BC) concentrations were obtained by the following methods: Sunset Laboratory field OC/EC analyzer, Rupprecht and Patashnick (R&P) series 5400 ambient carbon particulate monitor, Aerodyne aerosol mass spectrometer (AMS) for total organic matter (OM), and a two-wavelength AE-20 Aethalometer. Twenty-four hour averaged PM 2.5 filter measurements for OC and EC were also made with a Speciation Trends Network (STN) sampler. The diurnal variations in OC/EC/BC concentrations peaked during the morning and afternoon rush hours indicating the dominant influence of vehicle emissions. BC/EC slopes are found to range between 0.86 and 1.23 with reasonably high correlations (r > 0.75). Low mixing heights and absence of significant transported carbonaceous aerosol are indicated by the measurements. Strong correlations are observed between BC and thermal EC as measured by the Sunset instrument and between Sunset BC and Aethalometer BC. Reasonable correlations are observed among collocated OC/EC measurements by the various instruments.  相似文献   

8.
Biomass burning (BB) emissions and their atmospheric oxidation products can contribute significantly to direct aerosol radiative forcing of climate. Limited knowledge of BB organic aerosol chemical and optical properties leads to large uncertainties in climate models. In this article, we describe the experimental setup and the main findings of a laboratory BB study aimed at comprehensive optical, physical, and chemical characterization of fresh and aged BB emissions. An oxidation flow reactor (OFR) was used to mimic atmospheric oxidation processes. The OFR was characterized in terms of OH? production rate, particle transmission efficiency, and characteristic lifetimes of condensible compounds. Emission factors (EFs) of main air pollutants (particulate matter, organic carbon [OC], elemental carbon [EC], carbon monoxide [CO], and nitrogen oxides [NOx]) were determined for five globally and regionally important biomass fuels: Siberian (Russia), Florida (USA), and Malaysian peats; mixed conifer and aspen fuel from Fishlake National Forest, Utah, USA; and mixed grass and brush fuel representative of the Great Basin, Nevada, USA. Measured fuel-based EFs for OC ranged from 0.85?±?0.24 to 6.56?±?1.40?mg g?1. Measured EFs for EC ranged from 0.02?±?0.01 to 0.16?±?0.01?mg g?1. The ratio of organic mass to total carbon mass for fresh emissions from these fuels ranged from 1.04?±?0.04 to 1.34?±?0.24. The effect of OFR aging on aerosol optical properties, size distribution, and concentration is also discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   

9.
Abstract

The physical and chemical properties as well as the oxidative potential (OP) of water soluble components of coal combustion fine particles were examined. A laboratory-scale pulverized-coal burning system was used to produce coal combustion particles at different burning temperatures of 550?°C, 700?°C, 900?°C, and 1,100?°C. Few studies have reported the effects of burning temperature on both the chemistry and toxicity of coal combustion particles. The highest mass emission factor of particulate matter less than 2.5?µm (PM2.5) was found to be produced at 700?°C (3.51?g/kg), owing to strong elemental carbon (EC) emission and ash formation (ions and elements) resulting from the incomplete combustion of tar and char, and mineral fragmentation. The highest organic carbon in PM2.5 was found at 550?°C. At a temperature higher than 700?°C, the fraction of carbonaceous species decreased while the fractions of ions and elements increased owing to ash formation. Sulfate was found to be the dominant ionic species, followed by sodium, calcium, and magnesium. The highest emission of elements (Al, As, Ba, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, Ti, V, and Zn) and the highest fractions of Fe and Al were observed at 700?°C. Intrinsic OP activities obtained from dithiothreitol (DTT) and electron spin resonance (ESR) assays showed the highest values at 550?°C, suggesting that fine particles from low-temperature coal combustion had the highest reactive oxygen species generation capability (potentially toxic) among various tested burning temperatures. The results of principal component analysis suggested a correlation between OP-DTT activity and OC, EC, Cd, Co, V, and Zn, while OP-ESR activity was associated with chloride, nitrate, Ba, Pb, Sr, and Ti.

© 2018 American Association for Aerosol Research  相似文献   

10.
A number of investigations have examined the impact of the use of biodiesel on the emissions of carbon dioxide and regulated emissions, but limited information exists on the chemical composition of particulate matter from diesel engines burning biodiesel blends. This study examines the composition of diesel particulate matter (DPM) emissions from a commercial agriculture tractor burning a range of biodiesel blends operating under a load that is controlled by a power take off (PTO) dynamometer. Ultra-low sulfur diesel (ULSD) fuel was blended with soybean and beef tallow based biodiesel to examine fuels containing 0% (B0), 25% (B25), 50% (B50), 75% (B75), and 100% (B100) biodiesel. Samples were then collected using a dilution source sampler to simulate atmospheric dilution. Diluted and aged exhaust was analyzed for particle mass and size distribution, PM2.5 particle mass, PM2.5 organic and elemental carbon, and speciated organic compounds. PM2.5 mass emissions rates for the B25, B50, and B75 soybean oil biodiesel mixtures had 20%–30% lower emissions than the petroleum diesel, but B100 emissions were about 40% higher than the petroleum diesel. The trends in mass emission rates with the increasing biodiesel content can be explained by a significant decrease in elemental carbon (EC) emissions across all blending ranges and increasing organic carbon (OC) emissions with pure biodiesel. Beef tallow biodiesel blends showed similar trends. Nevertheless, it is important to note that the study measurements are based on low dilution rates and the OC emissions changes may be affected by ambient temperature and different dilution conditions spanning micro-environments and atmospheric conditions. The results show that the use of biodiesel fuel for economic or climate change mitigation purposes can lead to reductions in PM emissions and a co-benefit of EC emission reductions. Detailed speciation of the OC emissions were also examined and are presented to understand the sensitivity of OC emissions with respect to biodiesel fuel blends.

Copyright 2012 American Association for Aerosol Research  相似文献   

11.
Jie Zhang  Yunshan Ge 《Fuel》2009,88(3):504-6689
To study the effects of fuel sulfur content on the characteristics of diesel particle emitted from a typical engine used in China, two types of diesel fuel with sulfur content of 30 ppm and 500 ppm were used in this engine dynamometer test under six operation conditions corresponding to 20%, 50% and 80% load at 1400 rpm and 2300 rpm engine speeds, respectively. Gaseous pollutants and particulate matter (PM) emissions were sampled with AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp), respectively. More specifically, the PM mass, total carbon (TC), organic carbon (OC), elemental carbon (EC) and water-soluble ion distribution were also measured. Compared with high sulfur diesel, the application of low sulfur diesel can lower fuel-based PM emissions by 9.2-56.6%. At 1400 rpm, the low sulfur diesel decreased both OC and EC by 5-34% and about 20%; while at 2300 rpm, the low sulfur fuel decreased OC by 33-57% and increased EC emission, resulting in a lower OC/EC ratio. The evidence implicating that OC oxidation was promoted by low sulfur diesel, but the effect on EC oxidation was dependent on engine speed. The linear regression has been conducted between TC and PM10, and the slopes were 0.88 and 0.80 for low sulfur diesel and high sulfur one, respectively. Higher sulfate content was detected in the 0.13 μm particles when using the high sulfur diesel, but the percentage of sulfate was 0.9% for PM10 from both diesel fuels. Comparing with that of 500 ppm, EC increased sharply to a maximum of 114% in particles of 0.13 μm when using 30 ppm sulfur diesel at 2300 rpm.  相似文献   

12.
Daily mass concentrations of water-soluble inorganic (WS-i) ions, organic carbon (OC), and elemental carbon (EC) were determined for fine particulate matter (PM1, particles < 1.0 μm in diameter) collected at Xi'an, China. The annual mean PM1 mass concentration was 127.3 ± 62.1 μg m–3: WS-i ions accounted for ~38% of the PM1 mass; carbonaceous aerosol was ~30%; and an unidentified fraction, probably mostly mineral dust, was ~32%. WS-i ions and carbonaceous aerosol were the dominant species in winter and autumn, whereas the unidentified fraction had stronger influences in spring and summer. Ion balance calculations indicate that PM1 was more acidic than PM2.5 from the same site. PM1 mass, sulfate and nitrate concentrations followed the order winter > spring > autumn > summer, but OC and EC levels were higher in autumn than spring. Annual mean OC and EC concentrations were 21.0 ± 12.0 μg m?3 and 5.1 ± 2.7 μg m–3 with high OC/EC ratios, presumably reflecting emissions from coal combustion and biomass burning. Secondary organic carbon, estimated from the minimum OC/EC ratios, comprised 28.9% of the OC. Positive matrix factorization (PMF) analysis indicates that secondary aerosol and combustion emissions were the major sources for PM1.  相似文献   

13.
One full year of daily 24-hour fine particulate matter samples collected in East St. Louis, IL at the EPA funded St. Louis-Midwest Supersite were analyzed for organic carbon (OC), elemental carbon (EC) and non-polar organic tracers including polycyclic aromatic hydrocarbons (PAH(s)), hopanes, and alkanes. Two different analytical methods were used for analysis, solvent extraction gas chromatography/mass spectrometry (GCMS) and thermal desorption GCMS (TD-GCMS). The TD-GCMS method was equivalent to the solvent extraction GCMS method for key molecular markers. Select PAH(s) and alkanes were found to have extreme events within the annual study which had daily 24-hour concentrations that were 10 to 22 times higher than the annual average daily concentration. The OC and EC maxima were only 3 to 5 times higher than the annual average. To further assess the impact of point sources and to evaluate the compatibility of the two organic speciation methods, the six potential every sixth day annual averages were calculated and compared. The extreme concentration days were large enough, in the case of benzo[a]pyrene, to make every sixth day analysis not representative of the true annual average even with events greater than the 99th percentile of the annual distribution removed. The final analysis calculated day of the week averages for select representative organic tracers and revealed that gasoline motor vehicle tracers and OC do not have a distinct day of the week trend. EC, believed to be largely impacted by diesel exhaust, had a midweek concentration peak. These trends cannot necessarily be extrapolated to other urban areas or other events.  相似文献   

14.
The atmospheric abundances of elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC) have been measured in aerosol samples collected during wintertime (December–March) from selected sites (urban, rural and high-altitude) in northern India. A characteristic feature of their abundance pattern, at urban sites, is reflected in the OC/EC ratios (range: 2.4–14.5, Av=7.8±2.4, n=77) indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste). This is in sharp contrast to the OC/EC ratios at a rural site (range: 2.1–4.0, Av=3.1±0.6, n=7) influenced by emissions from coal-fired industries. The long-term measurements made from a high-altitude site (~2000 m amsl) reveal significantly lower abundances of EC and OC; suggesting that boundary layer dynamics (during wintertime) play an important role in efficient trapping of pollutants within the Indo-Gangetic Plain (northern India). The WSOC/OC ratios are fairly uniform (~0.35) in aerosols over urban sites but relatively enhanced contribution of WSOC and higher ratios (~0.5) at a high-altitude site emphasizes the significance of secondary organic aerosols. The comprehensive data set on EC, OC and WSOC/OC ratios from northern India is crucial to improve model parameterization of carbonaceous aerosols for atmospheric scattering and absorption of solar radiation on a regional scale.  相似文献   

15.
The General Motors Research Laboratories participated in both the field sampling and round-robin portions of the Carbonaceous Species Intercomparison study that was held in Glendora, CA, during the summer of 1986. Five samplers were operated during the field study. The average particulate elemental carbon (EC) concentrations determined from the five samplers agreed to within 12%. Large differences were observed in the concentrations of particulate organic carbon (OC) determined from the five samplers. Some of the differences are attributed to losses of OC from the filters due to volatilization during the collection period. The amount of volatilization varies with the length of the sampling time and the filter face velocity. In addition, the adsorption of gas-phase organic compounds caused a significant positive interference in the determination of OC. Our OC and EC results for the round-robin samples were compared to the values obtained by the other participating laboratories. The average ratio of our results to the mean of the other laboratories was 0.97 for all the OC data and 1.23 for EC from all but the ambient wood-burning and organic aerosol samples. The ratios for the latter samples were 1.9 or greater. It is concluded that EC can be collected and analyzed with high precision; however, the accuracy of the measurements is unknown since standards for EC in atmospheric particulate do not exist.  相似文献   

16.
《Ceramics International》2020,46(3):3166-3176
A large number of studies had shown that the morphology of the sample had a significant effect on the microwave absorption properties and catalytic activity of the sample. Manganese dioxide with different morphologies was synthesized by hydrothermal method through different precursors. The effects of sample morphology and microwave absorption properties on the catalytic activity of the sample in conventional thermal and microwave fields were studied. The results indicated that compared with the conventional thermal field, the catalytic activity of the samples in microwave field were obviously improved, and the activation energy of the reaction were decreased. Compared with the conventional thermal field, the conversion of toluene in microwave thermal field of MnO2(Ac), MnO2(S) and MnO2(N) increased by 59%, 42% and 12%, and the mineralization rate increased by 36%,11% and 2%, respectively, when the catalytic temperature was 150 °C. Compared with the traditional thermal field, the activation energy of the sample MnO2(Ac) in the microwave field was reduced by 88.3 KJ. A series of characterization results showed that the sample MnO2(Ac) had good catalytic activity in the microwave field was due to: MnO2(Ac) had proper microwave absorption properties, large amount of surface functional groups, large specific surface area and rich pore structure. The analysis results of electromagnetic parameters showed that: the reason that the sample MnO2(Ac) had good microwave absorption performance was that the MnO2(Ac) had proper impedance matching, high attenuation constant and Debye dipole relaxation effect.  相似文献   

17.
Pre-oxidized fibers as reinforcement are candidates for reducing the overall cost of C/C composites with superior properties. This study investigated the dynamic oxidation and protection of the pre-oxidized fiber C/C composites (Pr-Ox-C-C). According to the Arrhenius equation, the oxidation kinetics of the Pr-Ox-C-C consisted of two different oxidation mechanism with the transition point was at about 700 °C. Scanning electron microscopy investigation showed that oxidation initiated from the fiber/matrix interface of composites, whereas the matrix carbon was easily oxidized. To improve the anti-oxidant properties of Pr-Ox-C-C, a ceramic powder-modified organic silicone resin/ZrB2-SiC coating was prepared by the slurry method. The coated samples were subjected to isothermal oxidation for 320 h at 700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C with incurred weight losses of ? 1.6%, 0.77%, ? 1.28%, 0.68% and 1.19%, respectively. After 110 cycles of thermal shock between 1100 °C and room temperature, a weight loss of 1.30% was obtained. The Arrhenius curve presented four different phases and mechanisms for coating oxidation kinetics. The excellent oxidation resistance properties of the prepared coating could be attributed to the inner layer which was able to form B2O3-Cr2O3-SiO2 glass to cure cracks, and the ZrB2-SiC outer layer that could provide protective oxides to reduce oxygen infiltration and to seal bubbles.  相似文献   

18.
Thermal decomposition of powdered ammonium perchlorate, catalysed by manganese dioxide (MnO2), has been studied in the low concentration ranges of the catalyst. MnO2 sensitises the thermal decomposition of ammonium perchlorate. The activation energy estimations of catalysed ammonium perchlorate show that the value is about 30 kcal/mol throughout the low and the high temperature regions whereas uncatalysed ammonium perchlorate gives two activation energies, 20 kcal/mol in the low temperature region (280–320°C) and 60 kcal/mol in the higher temperature region (350–390°C). This behaviour has been explained on the basis of an electron transfer process. The effectiveness of MnO2 in the thermal decomposition further increases on pre-heating the sample at 50°C for two weeks; manganese ions enter the ammonium perchlorate lattice during the process of pre-heating.  相似文献   

19.
The aim of this paper is to investigate the effect of slip casting process and the annealing before and after sintering to achieve a transparent MgAl2O4. To remove contaminants such as carbon from the structure of shaped spinel bodies, at first, the samples were annealed at temperature of 800?°C, 900?°C and 1000?°C for 2?h and then sintered at 1400?°C. By annealing the sample before sintering at 900?°C, the transmission increased (15% at IR region and 10% at visible region). Although by annealing the samples, the amount of carbon contamination reduced. Annealing the samples after sintering also had some desirable results. The samples annealed at temperature of 1200?°C for a time of 3, 5 and 10?h. The darkness of samples reduced due to the removal of carbon impurities and the sample was annealed at 1200?°C for 5?h had the most transparency in the visible and infrared regions.  相似文献   

20.

Fine particle (PM2.5) emission rates and compositions from gray iron metal casting foundry were characterized for No-Bake molds poured at the Research Foundry located at Technikon, LLC (McClellan, CA). For each mold, PM2.5 was collected for chemical analysis, and particle size distributions were measured by an Electrical Low Pressure Impactor (ELPI) to understand PM emissions during different part of the casting process. Molds prepared with phenolic urethane binders were poured with Class 30 gray cast iron at 1,427–1,480°C. PM2.5 was collected from the pouring, cooling, and shakeout processes for each mold. Most of the PM2.5 mass emitted from these processes was composed of carbonaceous compounds, including 37–67% organic carbon (OC) and 17–30% elemental carbon (EC). Oxides of aluminum (Al), silicon (Si), calcium (Ca), and iron (Fe) constituted 8–20% of PM2.5 mass, and trace elements (e.g., K, Ti, Mn, Cu, Zn, and Pb) contributed 3–6%. Chemical abundances in PM were different between pouring and shakeout for each discrete mold. PM2.5 mass emissions from pouring were 15–25% of the total from each discrete mold. Ultrafine particles (< 0.1 μm) contributed less than 1% of PM2.5 mass, but nearly all of the particle numbers. Different mechanisms for pouring and shakeout result in variations in chemical abundances and particle size distributions. The highest PM2.5 mass and number concentrations were observed when shakeout started. PM2.5 size distributions in mass concentration during shakeout contained particles in the tail of coarse particles (1.6–2.5 μm) and a vapor condensation mode (0.65–1.6 μm). Flame conditions, vaporization, thermal decomposition of organic materials, and the variability of mold breakup during shakeout affect PM emission rates. A detailed chemical speciation for size-segregated PM samples at different process points needs to be conducted at full-scale foundries to obtain emission factors and source profiles applicable to emission inventories, source receptor modeling, and implementation of emission standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号