首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study contributes with a computational fluid dynamic simulation based on the numerical solution of continuity and momentum balance equations in a three‐dimensional (3‐D) framework. The proposed down flow gas–solid suspension model includes a unit configuration and CD drag coefficients recommended for these units. Computational particle fluid dynamics (CPFD) calculations using suitable boundary conditions and a Barracuda (version: 14.5.2) software allow predicting local solid densification and asymmetric “wavy flows.” In addition, this model forecasts for the conditions of this study higher particle velocity than gas velocity, once the flow reaches 1 m from the gas injector. These findings are accompanied with observations about the intrinsic rotational character of the flow. CPFD numerical 3‐D calculations show that both gas and particle velocities involve the following: (a) an axial velocity component, (b) a radial velocity component (about 5% of axial velocity component), and (c) an angular velocity component. The calculated velocity components and the rotational flow pattern are established for a wide range of solid flux/gas flux ratios. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1635–1647, 2013  相似文献   

2.
The measurement of the local solid velocity and the local solid hold-up in three-phase flows (gas, liquid, solid) is of great interest with regard to the design of three-phase reactors. Moreover, such measurements are necessary for the validation of flow simulations of three-phase flows. The optical methods usually applied for velocity measurements such as particle image velocimetry do not work in three-phase flows. This is due to the opacity of the solid phase or/and because of the reflections and refractions that occur on phase boundaries. Other measurement methods are intrusive and very time consuming. The measurement of the local solid hold-up is even more difficult. The new X-ray based particle tracking velocimetry (XPTV), described in this paper, measures the solid velocity and the solid content simultaneously. This fast working and non-intrusive technique has already been successfully applied in a bubble column to measure the liquid velocity. XPTV is a three-dimensional three-component method. It works independently from void fraction and solid hold-up.  相似文献   

3.
Experimental results are presented for a study of gas and particle flows in a 102 mm diameter conventional cyclone operated at temperatures between 300 and 2000 K. Inlet gas velocities ranged from 3 to 42 m/s. Particle deposition patterns and the measurements of local pressures were used to determine the flow patterns and velocity profiles within the cyclone. A “Reynolds Number” has been defined based on the mean inlet velocity and the hydraulic diameter of the annulus between the cyclone wall and the gas outlet duct. An empirical equation was derived to correlate the ratio of the wall tangential velocity to the mean inlet velocity with this Reynolds Number.  相似文献   

4.
改进了面向离散粒子法的能量最小多尺度曳力模型(EMMS/DP)的颗粒参数生成方式,并将非均匀因子(HD)与固相浓度和滑移速度关联以考虑介尺度结构动态效应的影响,用改进的EMMS/DP模型与多相流质点网格模型(MP-PIC)耦合模拟气固两相流提升管系统,模拟结果与实验值吻合很好,考察了MP-PIC方法的网格无关性和粗粒化模型参数.  相似文献   

5.
In a gas–solid fluidized bed with continuous hydrocarbon liquid spray, a volatile “cloudy zone” could be formed, defined as a dynamically steady liquid-affected zone, including droplets, wet particles, and the gas which passes through the zone. A new flow pattern with the dynamic coexistence of cloudy zone and non-cloudy zone (gas–solid zone), is accordingly established. The temperature, particle concentration, and particle velocity fields are measured in real-time via infrared thermography and particle imaging velocimetry, respectively. Results show that the area and range of central position of the cloudy zone illustrate a heavier fluctuant trend with the increasing velocity of liquid spray, and the main frequency of area fluctuation is close to that of the bubble rising. Moreover, the particle concentration and particle velocity in the cloudy zone are lower than those in the non-cloudy zone, breaking the conventional symmetrical distributions of hydrodynamic parameters of particles in a gas–solid fluidized bed.  相似文献   

6.
气固下行流化床反应器Ⅱ气固两相的流动规律   总被引:1,自引:1,他引:1  
气固下行流化床反应器气固两相流动过程是比较复杂的,沿轴向气固两相运动可分为第一加速、第二加速和恒速3个运动段,沿径向局部气体速度、颗粒速度和颗粒浓度都具有不同程度的不均匀性。而这种不均匀性是由气固两相顺重力场湍动运动所决定的。和循环床提升管相比,下行管反应器气固两相沿径向分布的不均匀性得到有效地改善,气固可以实现超短接触操作,因而是一种新型高效气固超短接触反应器  相似文献   

7.
The motion of solid particles and the “fish‐hook” phenomenon in an industrial classifying hydrocyclone of body diameter 355 mm is studied by a computational fluid dynamics model. In the model, the turbulent flow of gas and liquid is modeled using the Reynolds Stress Model, and the interface between the liquid and air core is modeled using the volume of fluid multiphase model. The outcomes are then applied in the simulation of particle flow described by the stochastic Lagrangian model. The results are analyzed in terms of velocity and force field in the cyclone. It is shown that the pressure gradient force plays an important role in particle separation, and it balances the centrifugal force on particles in the radial direction in hydrocyclones. As particle size decreases, the effect of drag force whose direction varies increases sharply. As a result, particles have an apparent fluctuating velocity. Some particles pass the locus of zero vertical velocity (LZVV) and join the upward flow and have a certain moving orbit. The moving orbit of particles in the upward flow becomes wider as their size decreases. When the size is below a critical value, the moving orbit is even beyond the LZVV. Some fine particles would recircuit between the downward and upward flows, resulting in a relatively high separation efficiency and the “fish‐hook” effect. Numerical experiments were also extended to study the effects of cyclone size and liquid viscosity. The results suggest that the mechanisms identified are valid, although they are quantitatively different. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

8.
A system of differential equations to obtain concentration and velocity distributions for quasi-uniform particle slurry flows is presented. Numerical solutions for various flow conditions have been obtained using an explicit algorithm. A “supported load” concept is proposed to explain the type of interaction through contact between solid particles in neighboring layers or between particles and the pipe wall. In the analysis, the relative contributions of terms describing turbulent shear stresses, particle interactions, and mixing effects vary with the dimensions of solid particles. The approach is tested for four kinds of sand of narrow size distributions (d = .65 mm, .48 mm, .52 mm and 13 mm), flowing with water in pipelines of various diameters (between 50 and 500 mm), at concentrations below 40% by volume. The coefficients used to estimate local parametes of the two-phase model are related to particle diameter. A comparison of numerical predictions and measurements of concentrations, velocities and headlosses shows the applicability of the model and the possibility of extrapolating available experimental results.  相似文献   

9.
Modifications were made to the Packed Bed Reactor Experiment (PBRE) and flown on the International Space Station as PBRE-2 to eliminate external pressure oscillations at higher liquid flow rates and the packing diameter was reduced to increase the pressure gradient for lower flows. It is found that gas hold-up is a function of bed history at low liquid and gas flow rates whereas higher gas hold-up and pressure gradients are observed for the test conditions following a liquid only pre-flow compared to the test conditions following a gas only pre-flow period. Over the range of flow rates tested, the capillary force is the dominant contributor to the pressure gradient, which is found to be linear with the superficial liquid velocity but is a much weaker function of the superficial gas velocity and varies inversely with the particle diameter.  相似文献   

10.
This paper deals with the sublimation of large bodies, or “objects”, made up from a pure substance in a bubbling gas fluidized bed of considerably smaller particles, or “fines”. The influence of such parameters as the gas velocity, the bed temperature, the size and the adsorption capacity of the fines has been investigated.

The results obtained clearly show that the rate of sublimation in fluidized beds is far higher than in air alone. It increases with increasing bed temperature, decreasing particle size, increasing powder mass capacity, and roughly varies as a parabolic function of time. It has also been observed that the temperature difference between the bed and the object surface, or “temperature depression”, depends on the fines characteristics as well as on bed temperature, but is independent of gas velocity when good solid mixing conditions are achieved.

Bed-to-object heat and mass transfer coefficients have been deduced from data points and attempts have been made to provide a reasonable theory to account for them. After a complete examination, the idea of interpreting transport phenomena based on a well-adapted “surface renewal model” has been proposed.  相似文献   

11.
12.
周如金  魏飞  金涌 《化学工业与工程》2001,18(3):182-186,F003
气固并行顺重力场与逆重力场流动形成了迥然不同的流态化机制 :下行床中 ,局部颗粒的聚集会使局部颗粒及气体速度增大 ,而局部气体速度的增大又会破坏颗粒的聚集 ;提升管中因气固逆重力场流动 ,颗粒的聚集会使局部气体及颗粒速度降低 ,而这种降低又会加重颗粒的聚集。与提升管相比 ,下行床具有气固速度和颗粒含率径向分布均匀和气固停留时间短以及返混小等特点 ,其流型更接近平推流  相似文献   

13.
Granular flows are complex flows of solid granular material which are being studied in several industries. However, it has been a challenge to understand them because of their non-linear and multiphase behavior. The present experimental work investigates granular flows undergoing shear, by specifically studying the interaction between rough surfaces and granular flows when the global solid fraction and the material comprising the rough shearing surface are varied. A two-dimensional annular shear cell, with a stationary outer ring and inner driving wheel, and digital particle tracking velocimetry (DPTV) technique were used to obtain local granular flow properties such as velocity, local solid fraction, granular temperature, and slip. A customized particle drop test apparatus was built to experimentally determine the coefficient of restitution (COR) between the granular and surface materials using high-speed photography. Results showed that wheel surface materials that produce higher COR values exhibit higher velocity and granular temperature values near the wheel, and lower slip velocities. The local solid fraction appears inversely related to the COR values. The global solid fraction seemed to correspond with velocity and granular temperature, while displaying an inverse relationship to slip. Results also showed an initial decrease in the kinetic energy of the flow as the global solid fraction increased, due to the formation of a distinct contact region. This was followed by a rise in kinetic energy as the global solid fraction continued to increase, based on the increase of particles present in the kinetic region of the flow.  相似文献   

14.
The gas and particle motions in a bubbling fluidized bed both with and without chemical reactions are numerically simulated. The solid phase is modelled as Discrete Element Method (DEM) and the gas phase is modelled as 2-D Navier-Stokes equations for 2-phase flow with fluid turbulence calculated by large Eddy simulation (LES), in which the effect of particles on subgrid scale gas flow is taken into account. The gas/particle flow structure, the mean velocities and turbulent intensities can be predicted as a function of several operating parameters (particle size, bed temperature, and inlet gas velocity). The lower the inlet gas velocity, the higher the ratio of particle collision. The distributions of the particle anisotropic velocity show that the particles have no local equilibrium, and the distribution of gas kinetic energy corresponds to the distribution of gas-particle coupling moment in the fluidized bed. An intensive particle turbulent region exists near the wall, and the gas Reynolds stress is always much higher than the particle stress. The presence of the large reactive particles in the fluidized bed may affect significantly the gas and particle velocities and turbulent intensities. The effects of the bed temperature and inlet gas velocity on the gas particle flow structure, velocity, and turbulent intensity are also studied.  相似文献   

15.
《Chemical engineering science》2003,58(3-6):1087-1093
While solid–liquid dispersion in mechanically agitated vessels has been widely investigated, the suspension of particles with simultaneous gas dispersion is, however, less well understood. A consideration of the gassing rate is of particular importance when designing “dead-end” batch reactors. Solid–liquid mass transfer coefficients were determined using the technique of dissolving a sparingly soluble solid, salicylic acid loaded onto silica gel, in water. Mass transfer was found to be dependent on a variety of geometric, physical and hydrodynamic properties; with the significant exception of agitation speed the influence of the latter properties was independent of gas dispersion. Flow visualisation with positron emission particle tracking has been used alongside the mass transfer measurements to study the effects of gas injection on the liquid flow patterns and the solid–liquid slip velocities. Time-averaged relative slip velocities were determined by simple subtraction of the data obtained using a neutrally buoyant particle. Gas dispersion was found to affect the particle–liquid slip velocity, explaining the mass transfer coefficient trends observed. While only a small diameter vessel has been used it does point to considerable non-uniformity of mass transfer in larger vessels.  相似文献   

16.
提升管循环流化床气,固局部滑落速度的分布   总被引:1,自引:0,他引:1  
本研究采用光纤激光多普勒测速仪(LDV),通过两列信号处理系统,同时测定了气体和颗粒局部速度,研究了低密度循环流化床提升管内局部滑落速度的变化规律。实验结果表明,提高颗粒循环速率,在任一径向位置的气固滑落速度均增加;提高气体表观速度,反而使气固之间局部滑落速度减小。由于固体颗粒在近壁区的团聚行为,在近壁区气、固局部滑落速度出现一个极大值。  相似文献   

17.
The non-isothermal gas-solid flow through a U-bend of a pneumatic conveying dryer system is calculated using the commercial CFD program Fluent 6.1. Steady-state, incompressible and non-isothermal gas-solid flows are employed to simulate the cases. Variables studied include: particle diameter, particle density, solid loading ratio, feed gas temperature, heat flux through the wall, gas velocity and bend radius ratio on heat transfer phenomena between gas and solid particles. Validation is done by comparing calculation results with the available experimental data provided by Baughn et al. [J.W. Baughn, H. Iacovides, D.C. Jackson, B.E. Launder, Local heat transfer measurements in turbulent flow around a 180° pipe bend, Journal of Heat Transfer 109 (1) (1987) 43-48] and Depew and Farbar [C.A. Depew, L. Farbar, Heat transfer to pneumatically conveyed glass particles of fixed size, Journal of Heat Transfer 85 (1963) 164-172].In general, data validations of both cases show good agreement. The gas temperature decreases and the solid temperature increases along the axial direction of the pipe due to transfer of heat from the gas phase to the solid phase. The gas temperature decreases significantly at the outer bend wall due to an accumulation of particles, which causes much more energy to be transferred from the gas to solid phases. At the inner bend wall, the gas temperature decreases slightly but the solid temperature increases significantly due to a low concentration of particles. A U-bend significantly increases the local and area average Nu numbers, but not the mass average Nu number. The slip velocity and particle distribution are the major factors influencing the value of the mass average Nu number.  相似文献   

18.
Tangential flow of a “power law” model fluid between two concentric cylinders is analyzed. A constant angular pressure gradient is imposed and one of the cylinders is rotating at a constant angular velocity. This type of flow is of interest in screw extrusion theory. The error in the superposition, i.e., linear addition of tangential pressure and drag flows, for a “power law” model fluid, is quantitatively calculated and plotted in the form of a correction factor. Tangential pressure flow is compared to a pressure flow between parallel plates and additional correction factor to account for the curvature is derived and plotted. The applicability of the “power law” model for flow of polymer melts in extruders is also discussed.  相似文献   

19.
An increasing number of industrially relevant suspensions, e.g., stabilized flows, backfill and codisposal systems, differ from conventional transport systems. Analysis of these suspensions is difficult due to their non‐Newtonian behavior and increased particle/particle interaction. This paper presents data obtained in a 100 mm diameter pipe test loop using magnetic resonance imaging (MRI). The flows considered are “stable” suspensions of coarse particles in visco‐plastic carrier fluids that are capable of statically suspending the solids. Particle concentration and fluid velocity maps are presented for a number of flow conditions which show that laminar flow of these suspensions is stratified rather than homogenous.  相似文献   

20.
We investigate in this article the macroscopic behavior of sheared suspensions of spherical particles. The effects of the fluid inertia, the Brownian diffusion, and the gravity are neglected. We highlight the influence of the solid‐phase inertia on the macroscopic behavior of the suspension, considering moderate to high Stokes numbers. Typically, this study is concerned with solid particles O (100 μm) suspended in a gas with a concentration varying from 5% to 30%. A hard‐sphere collision model (with elastic or inelasic rebounds) coupled with the particle Lagrangian tracking is used to simulate the suspension dynamics in an unbounded periodic domain. We first consider the behavior of the suspension with perfect elastic collisions. The suspension properties reveal a strong dependence on the particle inertia and concentration. Increasing the Stokes number from 1 to 10 induces an enhancement of the particle agitation by three orders of magnitude and an evolution of the probability density function of the fluctuating velocity from a highly peaked (close to the Dirac function) to a Maxwellian shape. This sharp transition in the velocity distribution function is related to the time scale which controls the overall dynamics of the suspension flow. The particle relaxation (resp. collision) time scale dominates the particulate phase behavior in the weakly (resp. highly) agitated suspensions. The numerical results are compared with the prediction of two statistical models based on the kinetic theory for granular flows adapted to moderately inertial regimes. The suspensions have a Newtonian behavior when they are highly agitated similarly to rapid granular flows. However, the stress tensors are highly anisotropic in weakly agitated suspensions as a difference of normal stresses arises. Finally, we discuss the effect of energy dissipation due to inelastic collisions on the statistical quantities. We also tested the influence of a simple modeling of local hydrodynamic interactions during the collision by using a restitution coefficient which depends on the local impact velocities. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号