首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Inhalation exposure to ultrafine particles, including radon progeny and other combustion aerosols, has been implicated in potential health risks of ambient and indoor environments. These particles deposit in the respiratory tract mainly by diffusion. The purpose of this study was to determine the deposition pattern of nanometer-sized particles in the human tracheobronchial (TB) airways of children and young adults. The deposition was determined for 1.75, 10, and 40 nm 212Pb particles at flow rates corresponding to respiratory minute volumes at rest and during moderate exercise. The 1.75 nm particles were unattached clusters, whereas the 10 and 40 nm particles were silver particles with attached 212Pb clusters. Replicate casts of the upper TB airways of 3, 16, and 23 year old humans were used, including the larynx, trachea, and bronchial airways down to generations 5-8. Deposition in each generation and total deposition were measured by counting the 212Pb gamma photopeak in a NaI (Tl) detector. The effects of airway geometry, particle size, and flow rate on deposition efficiency were studied. The deposition of the 1.75 nm particle, corresponding to unattached indoor radon progeny, was substantially higher than that of the 10 and 40 nm particles. The dependence of particle deposition on the flow rate was relatively weak, and deposition efficiencies were only slightly higher at the lower flow rates. The deposition models for diffusion from parabolic flow underestimated aerosol deposition, whereas the diffusion deposition predicted for plug flow overestimated the TB deposition. The deposition models resulting from this study can be used for developing lung deposition models and in the risk assessment of radon progeny and ultrafine ambient particles.  相似文献   

2.

Deposition of polydisperse aerosols by Brownian diffusion was studied analytically using the penetration efficiency of monodisperse aerosols combined with the correlations among the moments of lognormal distribution functions. The analytic solutions, so obtained were validated using the exact solutions, which were applied to recalculate the filtration efficiencies of the existing experimental data for various filtration conditions. It was found that the collection efficiency of a fibrous filter should be corrected with respect to the position in the filter, if the particles are polydisperse. By considering the effect of the polydispersity of particle size, the analytic solutions showed good agreement with existing experimental data. It is believed that the present work makes it possible to determine the filtration efficiency of polydisperse aerosols in fibrous filters and to estimate errors associated with the degree of polydispersity of the particles quickly and accurately for the diffusion dominant regime.  相似文献   

3.
Researchers at NIOSH are developing methods for characterizing ultrafine aerosols in workplaces. One method includes the detailed analysis of collected particles using electron microscopy (EM). In order to collect samples for EM at remote workplaces including mining and manufacturing facilities, researchers have developed a handheld electrostatic precipitator (ESP) particle sampler capable of collecting airborne particles including nanoscale materials, for subsequent EM analysis. The handheld ESP has been tested in the laboratory and is currently undergoing beta testing in the field. Gross collection efficiencies were measured with a CPC and net efficiencies by EM analysis of collected samples. Using laboratory-generated NaCl aerosols in the 30–400 nm size range at a flow rate of 55 cc/min and ESP operating voltages between 5.6–6.8 kV, both gross and net efficiencies were measured and showed a similar correlation with voltage, with maximum efficiency of approximately 86% at 6.4 kV. EM images from samples were also used to estimate particle size distributions of the original aerosols and the size-dependent deposition was evaluated for upstream versus downstream locations on the sample media. Results suggest that the number concentration and particle size distribution of sampled aerosols may potentially be estimated from a single ESP sample, but that the accuracy and repeatability of such quantification need to be investigated and refined. NIOSH is planning to license the ESP sampler for commercial manufacturing.  相似文献   

4.
The counting efficiency of the TSI model 3020 condensation nucleus counter (CNC) was determined as a function of aerosol flow rate and trigger level using aerosols of known size and an aerosol electrometer. When the aerosol flow rate dropped from 300 to 200 mL/min, counting efficiencies increased significantly in the single-particle counting mode for particles with diameter < 20 nm while those for larger particles remained constant. However, the photometric mode counting efficiency for particles with diameter > 20 nm increased and exceeded unity. When the aerosol flow rate was reduced to 100 mL/min, the counting efficiencies for both counting modes decreased regardless of particle size. Varying the trigger level of the CNC did not influence the photometric mode counting efficiency. However, the counting efficiency of the single-particle counting mode increased with decreasing trigger level, especially for particles < 20 nm in diameter. Characteristics for individual instruments need to be measured because counting efficiencies of two CNCs with the same trigger level and flow rate were not identical.  相似文献   

5.
Abstract

Regional particle deposition efficiency and deposition patterns were studied experimentally in a human airway replica made from an adult cadaver. The replica includes the oral cavity, pharynx, larynx, trachea, and four generations of bronchi. This study reports deposition results in the tracheobronchial (TB) region. Nine different sizes of monodispersed, polystyrene latex fluorescent particles in the size range of 0.93–30 μm were delivered into the lung cast with the flow rates of 15, 30, and 60 l min? 1. Deposition in the TB region appeared to increase with the increasing flow rate and particle size. Comparison of deposition data obtained from physical casts showed agreement with results obtained from realistic airway replicas that included the larynx. Deposition data obtained from idealized airway models or replicas showed lower deposition efficiency. We also compared experimental data with theoretical models based on a simplified bend and bifurcation model. A deposition equation derived from these models was used in a lung dosimetry model for inhaled particles, and we demonstrated that there was general agreement with theoretical models. However, the agreement was not consistent over the large range of Stokes number. The deposition efficiency was found as a function of the Stokes number, bifurcation angle, and the diameters of parent and daughter tubes. An empirical model was developed for the particle deposition efficiency in the TB region based on the experimental data. This model, combined with the oral deposition model developed previously, can be used to predict the particle deposition for inertial effects with improved accuracy.  相似文献   

6.
The deposition efficiencies of ultrafine aerosols and thoron progeny were measured in youth nasal replicas. Clear polyester-resin casts of the upper airways of 1.5-yr-old (Cast G), 2.5-yr-old (Cast H), and 4-yr-old (Cast I) children were used. These casts were constructed from series of coronal magnetic resonance images of healthy children. The casts extended from the nostril tip to the junction of the nasopharynx and pharynx. These casts were similar in construction to those used in previous studies (Swift et al. 1992; Cheng et al. 1993). Total deposition was measured for monodisperse NaCl or Ag aerosols between 0.0046 and 0.20 (Jim in diameter at inspiratory and expiratory flow rates of 3, 7, and 16 L min?1 (covering a near-normal range of breathing rates for children of different ages). Deposition efficiency decreased with increasing particle size and flow rate, indicating that diffusion was the main deposition mechanism. Deposition efficiency also decreased with increasing age at a given flow rate and particle size. At 16 L min?1, the inspiratory deposition efficiencies in Cast G were 33% and 6% for 0.008- and 0.03-μm particles, respectively. Nasal deposition of thoron progeny with a mean diameter of 0.0013 μm was substantially higher (80%-93%) than those of the ultrafine aerosol particles, but still had a similar flow dependence. Both the aerosol and thoron progeny data were used to establish a theoretical equation relating deposition efficiency to the diffusion coefficient (D in cm2 s?1) and flow rate (Q in L min?1) based on a turbulent diffusion process. Data from all casts can be expressed in a single equation previously developed from an adult nasal cast: E = 1 - exp(-aD 0.5 Q ?0.125). We further demonstrated that the effect of age, including changes to nasal airway size and breathing flow rate, on nasal deposition can be expressed in the parameter “a” of the fitted equation. Based on this information and information on minute volumes for different age groups, we predicted nasal deposition in age groups ranging from 1.5- to 20-yr-old at resting breathing rates. Our results showed that the nasal deposition increases with decreasing age for a given particle size between 0.001 to 0.2 μm. This information will be useful in deriving future population-wide models of respiratory tract dosimetry.  相似文献   

7.
Counting efficiencies for alpha particles emitted from the front and the back of 30-, 105-, 200-, and 400-mesh wire screens were measured for ultrafine radon daughter aerosols deposited at face velocities in the range 5.1 to 30.8 cm s?1. Mean activity median diameters for the ultrafine 218Po, 214Pb, and 214Bi particles were 0.70 ± 0.16, 1.1 ± 0.3, and 1.0 ± 0.2 nm (0.062, 0.033, and 0.038 cm2 s?1), respectively, as determined from graded wire screen array analysis of the test atmosphere. For wire screen collection efficiencies < 0.8, the “front-to-total” (FT) ratio, denned as the ratio of measured alpha activity from the front of the screen to the total alpha activity (front and back), was found to be insensitive to the screen and sampling parameters, with a mean value of 0.67 ± 0.02. With increasing collection efficiency, the FT ratio was found to increase, up to a maximum value of 0.86 ± 0.03 for collection efficiencies > 0.999. Alpha-particle losses within the screens (screen loss factors) were determined by comparison with counting efficiencies for radon daughters deposited onto membrane filters. For the four screen types studied, the mean screen loss factor at a face velocity of 21.2 cm s?1 was 1.04 ± 0.01. A Monte Carlo simulation of alpha-particle losses within a simple woven wire screen showed that the FT ratios were sensitive to the functional form of the deposition of the radioactive aerosol around the wire cylinders of each screen. Screen loss factors derived from the Monte Carlo analysis were found to be insensitive to the deposition on the wire, but dependent upon the counting geometry, in particular the distance between the wire screen and the detector.  相似文献   

8.
Abstract

A key to understanding biological response due to cell exposure to chemical constituents in aerosols is to accurately be able to determine the delivered dose. Deposition efficiency and uniformity of deposition was measured experimentally in the Vitrocell® 24/48 air–liquid-interface (ALI) in vitro exposure system using monodisperse solid fluorescent particles with mass median aerodynamic diameters (MMAD) of 0.51, 1.1, 2.2 and 3.3?µm. Experimental results were compared with computational fluid dynamics (CFD; using both Lagrangian and Eulerian approaches) predicted deposition efficiency and uniformity for a single row (N?=?6) of cell culture inserts in the Vitrocell® 24/48 system. Deposited fluorescent monodisperse particles were quantified using fluorescent microscopy and Image J software. Experiments were conducted using a suspension of two particle MMADs with each experiment being conducted a total of three times on different days. The average experimentally measured deposition efficiency ranged from a low of 0.013% for 0.51?µm MMAD particles to a maximum 0.86% for 3.3?µm MMAD particles. There was good agreement between the average experimentally measured and the CFD predicted particle deposition efficiency (regardless of approach) with agreement being slightly better at the smaller MMADs. Experimentally measured and CFD predicted average uniformity of deposition was >45% of the mean and within 15% of the mean for 0.51?µm and 2.2 MMAD µm particles, respectively. Experimentally measured average uniformity of deposition was between 15 and 45% of the mean while CFD predictions were within 15% of the mean for 1.1 and 3.3?µm MMAD particles. The deposition efficiency and uniformity across the cell culture inserts for solid particles should be considered when designing exposure regimens using the Vitrocell® 24/48 ALI in vitro exposure system.

Copyright © 2019 American Association for Aerosol Research  相似文献   

9.

A 3D computational model was developed to study the flow and the transport and deposition of nano-size particle in a realistic human nasal passage. The nasal cavity was constructed from a series of MRI images of coronal sections of a nose of a live human subject. For several breathing rates associated with low or moderate activities, the steady state flows in the nasal passage were simulated numerically. The airflow simulation results were compared with the available experimental data for the nasal passage. Despite the anatomical differences of the human subjects used in the experiments and computer model, the simulation results were in qualitative agreement with the experimental data.

Deposition and transport of ultrafine particles (1 to 100 nm) in the nasal cavity for different breathing rates were also simulated using an Eulerian-Lagrangian approach. The simulation results for the nasal capture efficiency were found to be in reasonable agreement with the available experimental data for a number of human subjects given typical anatomical differences. The computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate especially for the particles smaller than 20 nm. Based on the simulated results, a semi-empirical equation for the capture efficiency of the nasal passage for nano-size particles was fitted in terms of Peclet number.  相似文献   

10.

Laser-induced breakdown spectroscopy (LIBS) was evaluated as a means for quantitative analysis of the size, mass, and composition of individual micron-to submicron-sized aerosol particles over a range of well-characterized experimental conditions. Conditional data analysis was used to identify LIBS spectra that correspond to discrete aerosol particles under low aerosol particle loadings. The size distributions of monodisperse particle source flows were measured using the LIBS technique for calcium- and magnesium-based aerosols. The resulting size distributions were in good agreement with independently measured size distribution data. A lower size detection limit of 175 nm was determined for the calcium- and magnesium-based particles, which corresponds to a detectable mass of approximately 3 femtograms. In addition, the accuracy of the LIBS technique for the interference-free analysis of different particle types was verified using a binary aerosol system of calcium-based and chromium particles.  相似文献   

11.
ABSTRACT

In this study, the deposition of particles (0.3 μm to 2.5 μm in diameter) within a silicone rubber model of the human upper respiratory system was studied. The domain of the respiratory tract under investigation begins at the entrance (nostrils and mouth) and continues through to the second generation of the tracheobronchial airways (main bronchi). The particle deposition efficiency of the sample respiratory system was computed by measuring particle concentration at the inlet and outlet of the model. The regional deposition patterns of fluorescent particles (0.3 μm to 0.7 μm in diameter) was examined by measuring the fluorescent intensity with a fluorescence spectrophotometer. For simulated oral inhalation, the deposition efficiency of the oral cavity (0.9%-5.4%) is approximately the same as that of the oropharynx-trachea region (0.8%-4.8%). During simulated nasal inhalation, the deposition efficiency of the nasal region (20%-43.6%) is greater than the values of the nasopharynx-trachea region (2.8%-8.2%). The nasopharynx-trachea region exhibits a higher deposition efficiency than that of the oropharynx-trachea region. Deposition during the simultaneous oral and nasal inhalation is mostly affected by particle size. Flow rate through the model has less effect on deposition for particle diameter less than 1 μm. When particle diameter is greater than 1 μm deposition efficiencies are weakly and inversely related to the flow rate.  相似文献   

12.

To further validate a stochastic particle deposition model, three-dimensional deposition patterns predicted by that model were compared with corresponding spatial particle deposition data obtained from SPECT measurements. In the in vivo inhalation experiments, two different polydisperse aerosols with mass median aerodynamic diameters of 1.6 μ m and 6.8 μ m were inhaled by 12 test subjects, using different nebulizers. Predicted and measured deposition data were compared on three different levels: (1) total lung deposition, (2) deposition per hemispherical shell, and (3) deposition per airway generation. First, experimental and theoretical total lung deposition data showed good agreement for both the fine (65 ± 9% vs. 55 ± 21%) and the coarse aerosols (55 ± 8% vs. 46 ± 4%). Second, predicted deposition per hemispherical shell also corresponded well with the experimental data, both exhibiting small deposition fractions in the inner shells and a roughly quadratic increase in the outer shells. Third, fair agreement was observed for the deposition fractions per airway generation, both experimental data and modelling predictions exhibiting relatively small deposition fractions in central bronchial airway generations, followed by a steep increase in the peripheral respiratory airways. While the overall agreement between measured SPECT data and computed deposition fractions demonstrates that SPECT data can indeed be used for model validation, the current spatial resolution of the SPECT method allows only a limited validation of model predictions at the single airway generation level.  相似文献   

13.

This paper experimentally examines the bounce and immediate re-entrainment of liquid and solid monodisperse aerosols under a stable filtration regime (precake formation) by wet and dry fibrous filters. PSL and DEHS were the solid and liquid aerosols, respectively, used in four monodisperse sizes of 0.52, 0.83, 1.50, and 3.00 w m. Three different fibrous filters were used to filter the aerosol streams, and the efficiency of the filtration process for each aerosol type under dry and wet regimes was measured. It was found that the solid particles generally exhibited a lower fractional filtration efficiency than liquid particles, although this difference decreased in the smaller size fractions. The difference between solid and liquid efficiencies was found to be greatest in the 1.5 w m size range. As particle sizes of liquid/solid aerosols and filtration parameters were similar, this difference is most likely to be due to the effect of particle bounce and or immediate re-entrainment occurring inside the filter, with the greater efficiency of filtration of the liquid particles being due to their greater capacity to plastically/elastically deform in order to absorb the impact forces. However, for the wet filtration regime (each fibre of the filter was coated by a film of water), no significant difference in filtration efficiency was detectable between solid and liquid aerosols. Therefore, the conclusion can be drawn that the either the bounce effect of the particles is inhibited by the liquid film, or the filtration conditions in the wet filter are so different that the aerosol properties are less significant with respect to capture.  相似文献   

14.
A model is presented to describe the collection of ultrafine particles by the UNC passive aerosol sampler. In this model, particle deposition velocity is calculated as a function of particle size, shape and other properties, as well as a function of sampler geometry. To validate the model, deposition velocities were measured for ultrafine particles between 15 and 90 nm in diameter. Passive aerosol samplers were placed in a 1 m 3 test chamber and exposed to an ultrafine aerosol of ammonium fluorescein. SEM images of particles collected by the samplers were taken at 125 kX magnification. Experimental values of deposition velocity were then determined using data from these images and from concurrent measurements of particle concentration and size distribution taken with an SMPS. Deposition velocities from the model and from the experiments were compared and found to agree well. These results suggest that the deposition velocity model presented here can be used to extend the use of the UNC passive aerosol sampler into the ultrafine particle size region.  相似文献   

15.

Composition and size of individual submicron particles have been measured using a laser atomization ionization mass spectrometry technique, the Particle Blaster. Individual particles are quantitatively converted to atomic cations, providing information on both their complete elemental composition and particle size. Measured average atomic ratios for 100 nm particles of sodium chloride is 1.12 +- 0.36 (Cl:Na), for 50 nm particles of silica is 1.93 +- 0.52 (O:Si), and for 64 nm polystyrene latex spheres (PSL) is 1.13 +- 0.19 (H:C), in excellent agreement with the empirical formulae. Calculated particle sizes agree well with electrostatic classifier or TEM measurements in the size range of 17-900 nm diameter for particles of sodium chloride, silicon, and PSL. Size distributions are also obtain able, giving narrower distributions than are measured with an electrostatic classifier, for particles of alumina, silica, sodium chloride, and PSL spheres. Comparison with TEM data shows comparable primary particle sizes, but numerous particle aggregates are detected by the Particle Blaster which are unreported by the TEM measurements.  相似文献   

16.
The experimental studies using hollow lung cast of human tracheobronchial (TB) tree and in-vivo experiments have demonstrated enhanced charged deposition in the lung. The present study was carried out to implement charge particle deposition into the stochastic human lung model and to estimate enhanced deposition for various charged particles at the airway generation level. Enhanced deposition calculations of charged particles are performed by implementing two different efficiency equations derived for the TB and alveolar (Al) region. Deposition fractions of inhaled charged particles are computed by the stochastic airway generation model IDEAL (Inhalation, Deposition and Exhalation of Aerosols in the Lung) for various breathing conditions and particle sizes. Enhanced deposition of charged particles in the Al region is found to be up to five times higher than in the TB region. Enhanced deposition in the TB region is higher under sitting breathing condition than under light exercise breathing condition. The introduction of pause time, during inhalation, increases the probability of increased enhanced deposition up to a certain breath-hold time limit. The calculated enhancement factors (EF) reveals that more than two times higher deposition can be achieved in the lung by the introduction of charged particles during inhalation. By introducing the charged particles during inhalation and by optimizing the flow rate, tidal volume, and particle size, the targeted deposition in the lung is improved for the best therapeutic aerosols utilization. In addition, the unnecessarily high deposition of toxic particles in the sensitive lung regions can be avoided.

Copyright 2012 American Association for Aerosol Research  相似文献   

17.

Fibrous particles constitute an important class of aerosols that are potential human health hazards. Filters can remove aerosols from the air. The capture of spherical and fibrous aerosols by fibrous filters was investigated in this study. The governing equations of motions for translation and rotation of fibrous particles are derived for airflow over a cylindrical object. Only impaction and interception losses were considered in this study. Transport and deposition of fibrous particles were found to depend on Stokes number, fibrous particle aspect ratio, and ratio of the fibrous particle diameter to the diameter of fibrous filters. Using the Kuwabara flow field, transport and single-fibrous filter capturing efficiency of spherical and fibrous particles were calculated numerically, and these calculations were compared with available data in the literature. The calculated results compared favorably with the results of Yeh and Liu (1974) for spherical particles. Good agreement for losses by interception for both spherical and fibrous particles was observed between our results and those of Lee and Liu (1982). Further experimental data are needed to verify the predicted losses of fibrous aerosols by impaction.  相似文献   

18.
In this article, the potential of a thermophoretic sampling device to derive quantitative particle size distributions and number concentrations of aerosols based on microscopic single particle analysis is explored. For that purpose a plate-to-plate thermophoretic precipitator to collect ultrafine atmospheric particles for TEM (transmission electron microscopy) analysis has been calibrated and characterized. The representativeness of the samples has been verified in a series of experiments. Results show that, for particles with diameters of 15 nm to 300 nm, the precipitator's collection efficiency is independent of size, shape, and composition of the particles. Hence, its samples accurately represent the original aerosol.

A numerical model of thermophoretic deposition within the device has been developed and tailored to the specifications of the precipitator. The model has been used to derive the particle number density and size distribution of several calibration aerosols using the TEM analysis of the samples taken with the thermophoretic precipitator as input parameters. The results agree very well with the on-line measurements of the calibration aerosols. This work demonstrates that our thermophoretic sampling device can be used to derive quantitative particle size distributions and number concentrations of ultrafine particles based on microscopic single particle analysis.  相似文献   

19.

A new water-based condensation particle counter (WCPC) is presented. The WCPC is a thermally diffusive, laminar flow instrument. Condensational enlargement is achieved through the introduction of a saturated airflow into a “growth tube” with wetted walls held at a temperature higher than that of the entering flow. An unsheathed, 1 L/min instrument utilizing this principle has been evaluated with various aerosols. The particle size detected with an efficiency of 50% is at or below 4.8 nm for particles sampled from vehicular emissions or ambient air, and for various laboratory-generated inorganic salts. The cut point is higher for the organic materials tested, ranging from 8 nm to 30 nm depending on the compound and purity level. An empirically determined dead-time correction factor is applied to the coincidence correction, which allows extension of the single-count mode to higher concentrations. The counting efficiencies for 80 nm oil and salt aerosols are equal, and above 97% for concentrations approaching 10 5 cm ?3 . When subject to a step-fucntion change in input concentration the time required to attain 90% of the final value, including a 0.5 s lag, is 1.3 s. The corresponding exponential time constant is 0.35 s. The WCPC evaluated here is marketed as the TSI Model 3785.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号