共查询到20条相似文献,搜索用时 15 毫秒
1.
负熵是一种重要的非高斯性度量方法,最大化负熵使随机变量的非高斯性达到最大,从而使输出的各分量之间相互独立。负熵最大化算法以负熵作为目标函数,牛顿迭代法作为优化算法,针对牛顿迭代法中对初始值选择敏感的问题,用牛顿下山法代替牛顿迭代法,通过改变下山因子,使目标函数呈下降趋势,降低算法对初始值的依赖性。实验结果表明,改进后的算法在不同初始值下均能较好地分离语音音乐混合信号,改善了初值敏感问题。 相似文献
2.
针对稀疏信号盲源分离势函数法需要过多参数,以及聚类算法需要知道源信号个数的缺陷,采用基于拉普拉斯模型的势函数法估计源信号数目和混合矩阵。将混合信号重新聚类,对每一类信号的协方差矩阵进行奇异值分解,混合矩阵得到更精确的估计,进而源信号也得到更精确的估计。通过计算机仿真,表明了该算法的优越性。 相似文献
3.
基于盲源分离的单通道语音信号增强 总被引:1,自引:0,他引:1
在运用基于独立分量分析(ICA)的盲源分离法进行语音增强时,要求观测信号(含噪语音)的个数不少于源信号(纯净语音和噪声)的个数.由于含噪语音通常是单通道的,所以必须合理地生成另一路的虚拟观测信号,以实现纯净语音和噪声的分离是个关键.介绍了一种基于盲源分离和谱减法的单通道语音信号增强的方法.首先运用谱减法对语音进行部分去噪,产生了ICA其中的一路观测信号,并产生了对噪声的估计值.用语音和噪声估计值的帧平均能量构成了加权函数,将噪声的估计值与原始含噪语音进行加权组合,生成另一路的虚拟观测信号.由于虚拟观测信号很好地再现了实际的观测信号,所以运用ICA可以较好地实现了噪声和语音的分离.同时,盲源分离和谱减法相互结合,使语音增强的性能提高.实验证明了算法可以在信噪比很小的情况下实现对噪声的去除,其效果要优于传统的去噪算法. 相似文献
4.
张少刚 《自动化与仪器仪表》2011,(4):6-7,10
提出一种采用遗传算法进行盲信号分离的新方法,为盲信号分离领域提供一种新的研究思路与方法。该方法基于迁移策略,应用交叉和变异方法,生成新一代的染色体,对由多个源信号混合而成的信号进行盲信号分离。实例表明了该方法的有效性。 相似文献
5.
盲信号分离算法广泛应用于信号处理领域,本文介绍了一种基于互相关的盲分离频域算法,并且通过计算机仿真验证了本方法的有效性。 相似文献
6.
刘晶 《计算机测量与控制》2018,26(12):140-144
为了更准确地在噪声环境中对不同语音信号进行识别,提出了一种用于普适语音环境下的自优化语音活动检测(VAD)算法,该算法运用个性化语音命令自动识别系统的语音信号,并能够有效地从多个发声者的混合语音中分离出个体发声者的声音,通过跟踪语音功率谱的较高幅度部分和自适应地抑制噪声来检测发声者的语音信号;设计并实现了一种处理多个发声者任务的自动语音识别(ASR),免去了对干净的语音变化进行先验估计,直接利用噪声本身产生语音/非语音判决的阈值以完成自优化过程;使用语音数据库NOIZEUS进行了评价测试,实验结果表明,所提出的盲源分离和噪声抑制方法不需要任何额外的计算过程,有效地减少了计算负担。 相似文献
7.
语音信号在非平稳系统中是动态混合的,为了实时抑制盲源分离过程中的非平稳混合扰动,加快收敛速度,减小稳态误差,提出了一种应用PID控制原理的自适应盲源分离算法。依据一种无预处理的自适应盲源分离算法建立PID控制模型,调节学习速率,跟踪语音信号的分离过程,实时减小由非平稳混合引入的分离误差,动态更新分离矩阵。在混合矩阵缓变和突变两种情形下分别对PID参数整定和语音信号的分离进行仿真分析,结合经典算法对比提出算法的性能。仿真与对比结果表明,提出的算法适用于非平稳混合系统语音信号的分离,算法性能较经典算法有改善。 相似文献
8.
9.
10.
欠定情形下语音信号盲分离的新方法 总被引:1,自引:0,他引:1
提出了一种新的两步法来实现欠定情形下语音信号的盲分离。第一步,采用一种重构观测信号采样点搜索法来估计混合矩阵;第二步,提出了一种伪提取矢量的概念,通过伪提取矢量来提取取值占优的源信号的采样值来恢复源信号。在源信号的恢复过程中,还使用了经典的基于线性规划的欠定盲源分离方法。结果表明:该方法由于在信号的各采样点处无须优化,在源信号的分离过程中,分离速度要比基于线性规划的方法快数倍,且分离精度不低于基于线性规划的方法。仿真结果表明了该算法的良好性能。 相似文献
11.
在介质开放的无线网络中,物理层安全是上层安全的有效补充。为有的放矢地研究防御机制,设计实时生效且不易检测的物理层欺骗攻击成为一项关键且具有挑战性的任务。本文提出一种基于信道脉冲响应(channel impulse response,CIR)波动幅值和相位联合等效的物理层欺骗攻击方法。首先,针对现有研究仅利用单一CIR幅值信息且细粒度波动特征模拟能力弱所导致的攻击易被检测问题,利用CIR幅值和相位信息对位置欺骗攻击进行建模,以提高攻击成功率;进一步,理论分析证明CIR构成的矩阵为病态矩阵,揭示了CIR的微小波动使得攻击者模拟的CIR与预期产生巨大偏差的根本原因;进而,针对由于幅值和相位差异性导致的联合解决矩阵病态时融合困难的问题,将CIR幅/相波动距离进行等效对齐,分析得到CIR相似度阈值,从而筛选最优攻击的CIR,避免微小波动导致的攻击偏差。在两种典型场景的数据集中,进行了大量实验,结果表明,相较于已有欺骗攻击,所提出的攻击策略在原本可能攻击失败的位置能够攻击成功,且针对幅相检测方法攻击成功率更高。
相似文献12.
盲源信号分离及其发展 总被引:3,自引:0,他引:3
盲源信号分离是信号处理学界和神经网络学界所共同关注的一个热点研究问题,主要介绍了盲源信号分离的基本数学原理和基本模型、求解问题的步骤;以基于高阶累积量和信息论准则的各种典型学习算法为主要对象,对其各种典型方法的数学理论以及特点做了分析,介绍了现在的研究进展,并指出进一步的研究方向。 相似文献
14.
15.
从混合观测数据向量中恢复不可观测的各个源信号是阵列处理和数据分析的一个典型问题.独立分量分析是解决该问题的新技术,而基于四阶累计量的联合对角化(JADE)算法是独立分量分析最常用的算法,但此算法在k>2时得到近似解,且结果不精确.提出了一种基于遗传算法盲源信号分离的算法,此算法克服了JADE算法的不足,理论分析和仿真结果表明了该算法的可行性和有效性. 相似文献
16.
针对ICA用于语音信号盲分离时,由于数据量过大、迭代次数过多引起的收敛速度慢的问题,采用一种PCA和ICA相结合的盲分离算法PCA-ICA。通过PCA对混合语音信号进行白化处理,消除了原始各道数据间的二阶相关性。在仿真实验中,采用相似系数矩阵作为评价混合语音信号分离效果的标准,结果表明PCA-ICA算法与ICA算法相比,在达到几乎相同的相似系数矩阵的情况下,迭代次数减少了90%,从而分离速度提高了3倍,有效地解决了ICA分离算法收敛速度慢的问题。 相似文献
17.
盲源信号分离EASI算法研究与改进 总被引:1,自引:0,他引:1
研究EASI算法,以串音误差为衡量盲源信号分离效果的指标,给出EASI算法的仿真结果及性能分析。验证EASI算法的有效性,总结EASI算法应用于盲信号分离的优点与不足,并提出利用模拟退火策略有效地结合两种步长的优点,在初期快速下降,在后期精确收敛。结果表明,在本实验中使用模拟退火策略来调整学习率是简单有效的。 相似文献
18.
提出了一种基于自然梯度的语音盲分离改进算法。该算法首先使用奇异值分解(SVD)的方法对观测信号进行预白化处理,而后使用自然梯度算法对预白化处理后的观测信号进行分离。通过计算机模拟试验,结果显示该算法能够有效地分离随机混合的自然语音信号。 相似文献
19.
基于核学习的非线性映射能力,提出一种小波核广义方差的核独立成分分析算法WKGV-KICA.小波核函数具有近似正交,适用于信号局部分析的优点.与互信息相联系,将核广义方差作为对比函数对统计独立性进行衡量,可以获得理想的数学特性.将该算法应用于宽范围的盲源分离问题的实例中,并与现有算法进了比较.实验结果表明, WKGV-KICA算法在同等条件下的分离精度更高,而且性能更好. 相似文献
20.
稀疏盲源信号分离的新算法 总被引:1,自引:0,他引:1
针对以往通常采用线性规划或最短路径法计算相对复杂这一稀疏盲信号分离瓶颈,提出了一种新的算法,通过方向投影合理设置迭代初始值,结合最速下降法寻优估计源信号。新算法容易实现,分离速度快,能够很好地满足盲分离对速度的要求。 相似文献