首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.

Monodisperse and polydisperse aerosols were produced to evaluate the effect of particle size on cyclone and impactor performance. Monodisperse aerosols were generated from polystyrene latex and divinylbenzene particles. Polystyrene aerosols were also generated by mixing several monodisperse aerosols of different sizes. The mixture ratio of monodisperse aerosols was found by trial and error to generate polydisperse aerosols. Generated polydisperse aerosols had multimodal aerosol size distribution, which had the same peak point as shown in the size distribution of monodisperse particles. The results show the collection efficiency curves of a cyclone and impactor, when generating monodisperse particles were coherent with those for polydisperse ones. Our findings show that the size distribution and the size range of test aerosols can be easily determined by mixing monodisperse particles of known particle sizes, using a time saving procedure.  相似文献   

2.
A Volatility-Tandem-Differential-Mobility-Analyzer (VTDMA) and a Differential Mobility Particle Sizer (DMPS) were used to determine the number and mass concentration of externally mixed aerosol particles in urban background air. In the VTDMA the less-volatile (LV) particle fraction was measured at 300°C for particles in the size range 20–250 nm. The LV particle fraction was converted to the number concentration of LV particles (NLV) and the mass concentration (MLV). MLV was compared with the mass concentration of black carbon (MBC) measured by a Multi-Angle Absorption Photometer (MAAP). The DMPS and VTDMA data were used for calculating scattering and absorption coefficients (σSP and σ AP) with a Mie model and compared with σ SP and σ AP measured with a TSI nephelometer and the MAAP. The model was run by assuming external and internal mixing of absorbing and scattering aerosol. The best fit of measured and modeled σ SP and σ AP was sought by varying the refractive index. During periods dominated by local emissions LV particle fraction ??LV ? was high ( >0.2). In these cases, the MLV and the modeled σ AP assuming external mixing agreed well with the measured MBC and σ AP, respectively. For the long-range transported aerosol ??LV ? was small ( <0.1) and MBC was higher than MLV. For the whole period the average (± std) refractive index was 1.55 (± 0.09) – 0.04 (±0.02)i when internal mixing was assumed. When ??LV ? was >0.2 the average refractive index of LV particles was 1.96 – 0.8 (±0.18)i when σ AP was modeled assuming external mixing.  相似文献   

3.
Real-time particle size spectra are being acquired on our research aircraft with relative ease and speed by techniques that make use of the real-time interaction of laser light with aerosols and cloud droplets. The results are, however, sometimes ambiguous, because the optical “signatures” of the particles depend on their refractive indices in addition to physical dimensions. The calibration supplied by the manufacturer is based on instrument response to a specific test aerosol, e.g., latex spheres (refractive index = 1.59). Such a calibration is strictly valid only for sample aerosols of refractive index and shape similar to the test aerosol. Whenever the sample aerosol differs from the test aerosol, a calibration correction is in order. Of concern here is the use of an active scattering spectrometer probe (ASAS-X), to measure sulfuric acid aerosols on high-flying U-2 and ER-2 research aircraft. Correcting the calibration of the ASAS-X for dilute sulfuric acid droplets (refractive index = 1.44) that predominate the stratospheric aerosol changes the inferred sizes by up to 32% per size interval from that determined from the nominal calibration. This results in an average increase in particle surface area and volume of 42 ± 10% and 71 ± 19%, respectively. The calibration correction of the optical spectrometer probe for stratospheric aerosol is validated by independent and simultaneous sampling of the particles with impactors. Sizing and counting of particles on microphotographs of scanning electron microscope images give results on total particle surface areas and volumes. After the calibration correction, the optical spectrometer data (averaged over four size distributions) agree with the impactor results (similarly averaged) to within a few percent. We conclude that the optical properties, or chemical makeup, of the sample aerosol must be known for accurate size analysis by optical aerosol spectrometers.  相似文献   

4.
Silica–titania mixed oxides have excellent properties, such as a low thermal expansion coefficient and a refractive index that can be adjusted by changing the Ti content. However, when the Ti content increases, silica and titania phases in silica–titania mixed oxides can separate. This phase separation leads to the precipitation of the titania component as rutile or anatase crystals. When silica–titania mixed oxides undergo phase separation, their properties become unstable; for example, the refractive index of the particles becomes non-uniform. Therefore, it is preferable to synthesize silica–titania mixed oxides in an amorphous state without causing phase separation. Based on our previous studies on particle size control in silica synthesis, we employed a dry process using organosilicon compounds to synthesize silica–titania mixed oxides. In this study, spherical amorphous silica–titania mixed oxide particles were obtained via flame synthesis using organosilicon and organotitanium compounds. The purpose of this study was to characterize the obtained powder and explore the possibility of controlling particle size during synthesis. By studying the dry process synthesis of spherical silica–titania mixed oxide particles, we confirmed the relationships: between the Si/Ti molar ratio and the obtained crystal structure and between the adiabatic flame temperature and the particle size.  相似文献   

5.
This paper focuses on two important yet poorly addressed aspects of ambient aerosols: relationship of refractive index to mass density (index–density relationship) and consistency of the mixing rules used to calculate these two quantities of a multicomponent mixture like ambient aerosols with the index–density relationship. Combined empirical and theoretical analyses show that a denser material generally tends to have a larger refraction index because the applied electric field induces a greater number of electric dipoles, and that the index–density relationship can be described reasonably well by the Lorentz–Lorenz relation. It is shown that the commonly used volume–mean mixing rule for calculating the effective mass density, the Lorentz–Lorenz mixing rule and the molar refraction mixing rule for calculating effective refractive index form a set of mixing rules that are consistent with the Lorentz–Lorenz relation. The molar fraction mixing rule and the Lorentz–Lorenz mixing rule are shown to be equivalent for the Lorentz–Lorenz mixture while the linear volume-mixing rule is an approximation of the Lorentz–Lorenz mixing rule for quasi-homogeneous mixtures wherein the refractive indices of the constituents do not differ much. The results highlight the need for consistency of the mixing rules for calculating the effective refractive index and mass density with the index–density relationship, which not only provides a theoretical guide for judiciously choosing the mixing rules to calculate effective properties of ambient aerosols but also poses new challenges to develop an effective medium theory that applies to more than one quantity. An empirical power-law expression is obtained from the published data that relates the effective specific refractive index to the effective mass density of aerosol particles.  相似文献   

6.
Abstract

Controlling the emission of submicron particles of toxic metals in a combustion system poses a challenge. One possible mechanism for removing these fine particles is through intercoagulation with coarse particles. A bimodal lognormal model was applied to investigate the impact of intercoagulation rate on the size distributions of fine-mode aerosols. Fine-mode particle removal time was found to depend strongly on the number concentration of coarse-mode particles, but it was independent on the number concentration of fine-mode particles. An increase of geometric standard deviation of fine-mode particles from 1 to 1.6 significantly increased the dimensionless removal time 27 times. On the contrary, an increase of the deviation of coarse-mode particles in the same range only decreased 3% of the dimensionless removal time. The variation of geometric mean size ratio, meanwhile, had only insignificant effects on dimensionless removal time. For a constant mass concentration, removal time decreased as geometric standard deviation narrowed and mean size of coarse mode decreased. Fine-mode particles ultimately approached monodisperse when the dominant mechanism was intercoagulation; meanwhile, coarse-mode particles approached the asymptotic shape because intracoagulation was the dominant mechanism. The results show that on a constant mass basis, monodisperse coarse-mode particles with a high number concentration are the optimal condition for enhanced removal of fine-mode particles through intercoagulation.  相似文献   

7.
Current atmospheric observations tend to support the view that continental tropospheric aerosols, particularly urban aerosols, show multimodal mass distributions. One of the obvious mechanisms causing the multimodality is the mixing of different primary sources. Other modes involve dissimilar aerosol formation processes in the atmosphere. Fine aerosol particles are generated from secondary processes such as nucleation, condensation and chemical reaction, whereas coarse particles usually consist of dust, fly ash and mechanically generated aerosols. With the use of a newly developed computer code GROWTH in our laboratory, we report here the simulated results of Brownian coagulation dynamics involving multimodal mass density functions for long periods of time. In our model calculations we assume that the aerosol particles are well mixed in an atmospheric volume so that spatial variation in the distribution is negligible. Our accurate numerical simulation of the Brownian coagulation dynamics indicates that once formed, an atmospheric multimodal aerosol distribution in the range 0.1 to 100 μm will maintain its identity for a very long period of time (at least hours) unless “atmospheric perturbations” such as meteorological instabilities, rain-washout and gravitational settling occur. It is our belief that understanding the complex domain of atmospheric aerosols requires systematic investigation of each process. This paper is a continuation of such an investigation.  相似文献   

8.
The composition, particle shape, number concentration, size distribution, and spatial and temporal distributions of dust aerosols cause significant uncertainties in relevant radiative transfer simulations. The spherical particle approximation has been generally recognized to introduce errors in radiative transfer calculations involving dust aerosols. Although previous studies have attempted to quantify the effect of non-spherical particles, no consensus has been reached as to the significance of the dust aerosols non-spherical effect on flux calculations. For this study, we utilize a newly developed ultra-violet-to-far-infrared spectral database of the single-scattering properties of tri-axial ellipsoidal, mineral dust-like aerosols to study the non-spherical effect on radiative forcing. The radiance and flux differences between the spherical and ellipsoidal models are obtained for various refractive indices and particle size distributions. The errors originating from using the spherical model and the uncertainties in the refractive indices are quantified at both the top and bottom of the atmosphere. The dust non-spherical effect on the net flux and heating rate profile is obtained over the entire range of the solar spectrum. The particle shape effect is found to be related to the dust optical depth and the surface albedo and can be an important uncertainty source in radiative transfer simulation. The particle shape effect is largest over water surfaces and can cause up to a 30% difference in dust forcing at the top of the atmosphere.  相似文献   

9.
This article presents a validation study of the stochastic particle-resolved aerosol model PartMC with experimental data from an aerosol chamber experiment. For the experiment, a scanning mobility particle sizer and a single-particle soot photometer were used to monitor the aerosol mixing state evolution of two initially externally mixed aerosol populations of ammonium sulfate and black carbon particles undergoing agglomeration. We applied an efficient optimization algorithm (ProSRS) to determine several unconstrained simulation parameters and were able to successfully reproduce number concentrations and size distributions of mixed particles that formed by agglomeration. The PartMC modeling approach in conjunction with the optimization procedure provides a tool for detailed comparisons of chamber experiments and modeling, where aerosol mixing state is the focus of investigation.

Copyright © 2019 American Association for Aerosol Research  相似文献   

10.
Particle size distributions are of profound interest in the study of ambient aerosols. Electrostatic classification using the Scanning Mobility Particle Sizer (SMPS) and more recently the Fast-Mobility Particle Sizer (FMPS) is the most commonly employed approach to establish particle size distributions for submicron particles in field and laboratory applications. The FMPS enables fast size distribution measurements on a timescale of seconds but has been speculated to underestimate particle size. Aerosol mass spectrometry has emerged as another well-accepted method for size-resolved compositional aerosol analysis with particle sizing being accomplished by flight time separation over a specified flight path under vacuum conditions. In this work, we characterized the particle sizing performance of an FMPS against simultaneous measurements with an Aerodyne Aerosol Mass Spectrometer (AMS) and an SMPS by sampling ambient particles, as well as polydisperse and monodisperse particles from aqueous inorganic salt solutions in the size range from 50 nm to 450 nm. The particle size measurements by AMS and SMPS produced similar results, while the FMPS significantly underestimated particle size by 40–50%. The discrepancy was observed in all studied ambient and laboratory-generated aerosols and appeared to be largely independent of the sampled species. The observations suggest that it is crucial to evaluate the sizing performance of the FMPS against other instruments to ensure an adequate accuracy of the particle size measurements. In this study, a simple postcorrection method for the FMPS measurements was applied, which was able to successfully reduce the initial underestimation.

Copyright 2013 American Association for Aerosol Research  相似文献   

11.
Diffusion charging-based surface area for spherical particles was measured and compared with geometric surface area in the submicrometer size ranging from 100 to 900 nm. Spherical aerosol particles (polystyrene latex particles (PSL) and droplets of diethylhexyl sebacate (DEHS)) were generated by electrosprays for 100–600 nm particles and by a condensation generator for 700–900 nm particles. Two commercially available diffusion chargers (DCs) (DC2000CE, Ecochem, USA; LQ1-DC, Matter Engineering, Switzerland) were challenged with monodisperse uncharged spherical aerosols. Results showed that the surface areas measured by the two DCs were proportional to mobility diameter to power 1.22 and 1.38, respectively, in the size range from 100 to 900 nm. Comparison of the DC-based surface area with theoretical active surface area resulted in reasonable agreement within ±30%, indicating that the DCs underestimate geometric surface area of particles. The deviation of the DC-based surface area from the geometric surface area was quantitatively measured and was found to be up to 94% in the size range studied. Three types of aerosol particles were used to validate the correction of the DC deviation from the geometric surface area for particles larger than 100 nm based on the fit obtained for spherical particles in this study: spherical silver particles, carbon nanofibers, and titanium dioxide agglomerates. Comparison of the corrected DC-based surface area to Brunauer–Emmett–Teller (BET)-measured surface area indicated that the DC surface area reasonably agrees with the BET value for the particles tested except carbon nanofibers with 300 nm modal diameter.  相似文献   

12.
ABSTRACT

Particle emissions from consumer-fused deposition modeling 3D printers have been reported previously; however, the complex processes leading to observed aerosols have not been investigated. We measured particle concentrations and size distributions between 7 nm and 25 μm emitted from a 3D printer under different conditions in an emission test chamber. The experimental data was combined with a moment lognormal aerosol dynamic model to better understand particle formation and subsequent evolution mechanisms. The model was based on particles being formed from nucleation of unknown semivolatile compounds emitted from the heated filament during printing, which evolve due to condensation of emitted vapors and coagulation, all within a small volume near the printer extruder nozzle. The model captured observed steady state particle number size distribution parameters (total number, geometric mean diameter and geometric standard deviation) with errors nominally within 20%. Model solutions provided a range of vapor generation rates, saturation vapor pressures and vapor condensation factors consistent with measured steady state particle concentrations and size distributions. Vapor generation rate was a crucial factor that was linked to printer extruder temperature and largely accounted for differences between filament material and brands. For the unknown condensing vapor species, saturation vapor pressures were in the range of 10?3 to 10?1 Pa. The model suggests particles could be removed by design of collection surfaces near the extruder tip.

Copyright © 2018 American Association for Aerosol Research  相似文献   

13.
The selectivity of aggregation in mixtures of two charged aerosols containing chemically dissimilar nanoparticles is studied by means of a newly developed direct simulation Monte Carlo method. This method allows to trace changes in complex multidimensional systems, in this case describing particle size, charge and aggregate composition. A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. Three model systems were studied: polydisperse aerosols with initially bipolar charge distribution, unipolarly charged polydisperse aerosols and quasi-monodisperse oppositely charged aerosols. The study is focused on the aggregate composition's dependence on the initial size and charge distribution. It was found that the use of bipolarly charged aerosols does not increase the selectivity of mixing whereas unipolarly, oppositely charged aerosols reach more rapidly a more homogeneous distribution of components within the aggregates. In the last case, the addition of one more elementary charge to the particles roughly doubles the fraction of bicomponent, 1:1 mixed nanoaggregates and accelerates the process.  相似文献   

14.
Hao Jiang 《Polymer》2011,52(3):778-785
Increased using of plastic optical elements has generated a need for applying antireflection coatings onto plastic substrates. In this paper we reported a facile method to preparing porous thin films on plastic substrates by spin-casting poly (methyl methacrylate) (PMMA)/polystyrene (PS) mixed latices, followed by selectively removing PS particles. The refractive index of the porous coating is directly related to its porosity which could be controlled by varying mixing fraction of the sacrificial PS particles. The obtained porous thin films exhibited excellent anti-reflective (AR) performance over visible range with minimum reflection of 0.02%. The powerful control on refractive index and the versatility of this method makes it practicable to prepare antireflective coating on various plastic substrates with optimal performance.  相似文献   

15.
Chemical composition and mixing state of aerosols collected over an 11,000 km latitudinal cruise in the Pacific Ocean are reported here as determined by a new application of Raman spectroscopy. The Raman microspectroscopy technique employs a Raman spectrometer coupled to an optical microscope to identify the chemical composition and internal mixing state of single particles. By analyzing multiple particles in a collected ensemble, the degree of external mixing of particles was also determined. To lend context to the Pacific aerosol population sampled, atmospheric aerosol concentration, and the critical supersaturation required for the aerosols to activate as cloud condensation nuclei, and chlorophyll a concentration in the underlying water (a metric for phytoplankton biomass in the ocean) were also obtained. Our results indicate that long chain organic molecules were prevalent in the marine aerosol samples throughout the cruise, including during coastal and open ocean locations, in both hemispheres, and in the seasons of autumn and spring. Long chain organic compounds tended to be present in internal mixtures with other organic and inorganic components. Although variations in the fraction of aerosols activated as CCN were observed, no simple correlation between organics and CCN activation was found. According to our measurements, marine aerosol in the Pacific Ocean may be generally characterized as multicomponent aerosol containing and often dominated by a high organic fraction. Our results suggest that the prevalence of organics and the high degree of internal mixing of aerosol must be accounted for in accurate modeling of the role of marine aerosols in cloud formation and climate.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.

Particle concentrators are commonly used for controlling exposure levels to ambient ultrafine, fine, and coarse aerosols over a broad range of concentrations. For ultrafine aerosols, these concentrators require water condensation technology to grow and enrich these smaller sized particles (D a < 100 nm). Because the chemistry of the particles is directly related to their toxicity, any changes induced by ultrafine concentrators on ambient particles need to be better characterized in order to fully understand the results obtained in health exposure studies. Using aerosol time-of-flight mass spectrometry (ATOFMS), the size-resolved chemistry was measured of concentrated ultrafine and accumulation mode (50–300 nm) particles from several particle concentrators with different designs. This is the first report detailing the size-resolved distributions of elemental carbon (EC) and organic carbon (OC) particles sampled from concentrators. Experimental measurements of the single particle mixing state of particles in concentrated versus non-concentrated ambient air show transformations of ultrafine EC particles occur as they become coated with organic carbon (OC) species during the concentration process. Based on relative ion intensities, concentrated ultrafine particles showed a 30% increase in the amount of OC on the EC particles for the same aerodynamic size. An increase in the number fraction of aromatic- and polycyclic aromatic hydrocarbon-containing particles was also observed in both the ultrafine and fine size modes. The most likely explanation for such changes is gas-to-particle partitioning of organic components (e.g., water-soluble organic compounds) from the high volume of air used in the concentrator into aqueous phase ultrafine and fine aqueous particles created during the particle enrichment process.  相似文献   

17.
This paper presents a user-friendly database software package of the single-scattering properties of individual dust-like aerosol particles for application to radiative transfer calculations in a spectral region from ultraviolet (UV) to far-infrared (far-IR). To expand the degree of morphological freedom of the commonly used spheroidal and spherical models, tri-axial ellipsoids were assumed to be the overall shape of dust-like aerosol particles. A combination of four computational methods, including the Lorenz–Mie theory, the T-matrix method, the discrete dipole approximation, and an improved geometric optics method, was employed to compute the phase matrix, extinction efficiency and single-scattering albedo of ellipsoids with various aspect ratios and sizes. The scattering property database was developed for 42 particle shapes specified in terms of two aspect ratios, 69 refractive indices and 471 size parameters. Additionally, accompanying software, based on interpolation, was developed to provide the single-scattering properties for user-specified aspect ratios, refractive indices and size parameters. The software package allows for the derivation of the bulk optical properties for a given distribution of particle microphysical parameters (i.e., refractive index, size parameter and two aspect ratios). The array-oriented single-scattering property data sets are stored in the NetCDF format.  相似文献   

18.
Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min?1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment.  相似文献   

19.
Monodisperse, fine aerosols are needed in many applications: filter testing, experiments for testing models, and aerosol instrument calibration, among others. Usually, monodisperse fine aerosols are generated in very low concentrations, or mass flow rates, in the laboratory scale. In this work, we needed to generate aerosols with higher mass flow rate than typically available by the laboratory-scale methods, such as atomizers, nebulizers, ultrasonic generators, vibrating orifice generators, and condensation generators. Therefore, we constructed a fluidized bed aerosol generator to achieve particle mass flow rates in the range of 15-100 g/h. Monodisperse, spherical SiO2 particles of two sizes with geometrical diameters of 1.0 and 2.6 µm were used in the aerosol generator. The aerosol generator was used at both atmospheric pressure, and at high pressures up to 5 bar (abs).The particle size, mass concentration and the net average particle charge were measured after mixing the aerosol with nitrogen. The particle size distributions with both particle sizes were monodisperse, and no particle agglomerates were entrained from the fluidized bed. The behavior of the fluidized bed generator was found to be markedly different with the two particle sizes in regard to particle concentration, presumably due to different particle charging inside the generator. After determining the net average charge of the particles, an ion source Kr-85 was used to reduce the charge of the particles. This was found to be effective in neutralizing the particles.  相似文献   

20.

We have applied Raman spectroscopy to the in-situ measurement of chemical composition of polydisperse flowing aerosols. Monodisperse and polydisperse aerosols in the size range 0.3 to 1.8 w m, composed of diethylsebacate (DES) and ammonium sulfate, were generated. The particles were irradiated with 514.5 nm laser light and Raman spectra were collected. The Raman intensities of DES at 2935 cm -1 and ammonium sulfate at 981 cm -1 , normalized by the nitrogen carrier gas Raman intensity at 2313 cm -1 , were approximately proportional to the aerosol mass loading over the particle size range studied. Calculations based on previous theoretical studies support this observation. The mass loading ranged from 0.17 to 12.8 g/m 3 for DES and 20 to 138 mg/m 3 for ammonium sulfate. The method was applied to mixing aerosol streams containing DES and ammonium sulfate in a turbulent jet. The Raman system, with a sensitive volume of 0.02 mm 3 , was used to measure radial and axial concentration profiles in the mixing region. The results compared well with turbulent mixing theory. The primary limitation for application of the method is the low signal to noise ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号