首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Euler-Bernoulli曲梁理论,考虑材料沿拱厚度方向呈梯度分布时中性层的改变,将变曲率功能梯度材料(Functionally Graded Materials,FGM)拱在弧线方向离散成多个曲拱单元。视每个曲拱单元为半径一定的圆弧拱单元,根据Hamilton变分原理推导出FGM圆弧拱单元的面内自由振动方程,进而求得了单元传递矩阵。利用传递矩阵法(Transfer Matrix Method,TMM)推导出变曲率FGM拱的面内自由振动特征方程,求解两端固定边界条件下变曲率FGM拱面内自由振动的固有频率,并将得到结果与现有文献作了比较,证明TMM对求解该问题的有效性。分析了曲率变化系数和材料体积分数变化系数对变曲率FGM拱的面内自由振动频率的影响。  相似文献   

2.
假设矩形板为正交各向异性,材料的物性沿矩形板的宽度方向按幂律连续分布,基于二维线弹性理论,建立了四边弹性约束功能梯度材料(Functionally Graded Material,FGM)矩形板面内自由振动的控制偏微分方程。控制方程为复杂耦合的变系数偏微分方程,采用微分求积法(Differential Quadrature Method,DQM)数值研究了四边弹性约束FGM矩形板面内自由振动的无量纲频率特性。通过设置弹性刚度系数为0或∞,梯度指数为0,问题退化为各种典型边界下矩形板的面内自由振动,与已有的各向同性矩形板自振频率结果进行比较,结果表明分析求解方法行之有效。最后考虑了FGM矩形板边界条件、长宽比、梯度指数及刚度系数对自振频率的影响。  相似文献   

3.
基于一阶剪切理论和哈密顿原理,研究了功能梯度材料(FGM)变厚度圆板在热环境中的自由振动问题。假设材料性质沿厚度幂指数连续变化且材料属性与温度相关,推导了问题的运动微分方程。用微分求积法(DQM)计算了变厚度FGM圆板横向振动的无量纲频率,并与各向同性等厚度圆板的固有频率进行了比较。讨论不同均匀和非均匀温度场、材料梯度变化、厚度系数变化以及不同边界条件对FGM圆板固有频率的影响。  相似文献   

4.
基于经典薄板理论和Hamilton原理研究温度影响下Winkler-Pasternak弹性地基上多孔功能梯度材料(FGM)矩形板的自由振动特性。采用Voigt混合幂率模型和孔隙任意分布模型来表征多孔FGM矩形板的材料属性,并考虑多孔FGM矩形板内部均匀温升和材料具有温度依赖特性;应用物理中面推导弹性地基上多孔FGM矩形板自由振动的控制微分方程并进行无量纲化;采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,引入典型的六种边界在MATLAB统一编程且保证计算精度一致,经过迭代收敛,求解出无量纲固有频率;通过算例研究了边界条件、梯度指数、升温、孔隙率、长宽比、边厚比、无量纲弹性刚度系数和无量纲剪切刚度系数对多孔FGM矩形板振动特性的影响。  相似文献   

5.
针对非圆弧拱面内线性自由振动没有解析的现状,提出了一种变系数平衡微分方程近似解析方法来解决该问题。基于笛卡尔直角坐标系下非圆弧拱线性应变与Hamilton原理,推演了非圆弧拱面内自由振动变系数平衡微分方程;基于陡拱与浅拱面内振型没有显著差异的基本假定,将该变系数平衡微分方程对应的常系数平衡微分方程的通解,代入变系数平衡微分方程,得到该变系数平衡微分方程的不平衡差;当该不平衡差沿全拱积分为零时自振频率误差最小,进而得到非圆弧拱面内自振频率高精度实用解析。基于所提出的变系数平衡微分方程近似解析方法,推演了非圆弧两铰拱与无铰拱面内自振频率实用解析,并阐明了非圆弧拱与同参数直梁面内自振频率的逻辑关系。抛物线、悬索线、悬链线与组合线等常用非圆弧两铰拱与无铰拱自由振动算例结果表明:该研究的基本假定得到了严格检验;自振频率与有限元结果吻合较好,非圆弧拱前十阶自振频率中,两铰拱自振频率最大相对误差为7.71%,无铰拱自振频率最大相对误差为4.34%;非圆弧拱与同参数直梁面内自振频率的比例系数,可为行业规范条文修订提供参考。  相似文献   

6.
基于二维线弹性理论,建立Winkler-Pasternak弹性地基上功能梯度(Functionally Graded Material,FGM)梁自由振动控制微分方程。假设材料物性沿梁厚度方向按幂律分布,采用微分求积法(Differential Quadrature Method,DQM)数值求解4种不同边界FGM梁自由振动无量纲频率特性。将计算结果与Winkler-Pasternak弹性地基梁对比表明,该分析方法对弹性地基梁自由振动研究行之有效,并考虑边界条件、梯度指数、跨厚比、地基系数对FGM梁自振频率影响。  相似文献   

7.
林鹏程  滕兆春 《振动与冲击》2020,39(12):249-256
基于Timoshenko梁理论研究两端夹紧、一端夹紧一端简支、两端简支三种不同边界条件下的轴向运动功能梯度材料(FGM)梁在热冲击载荷作用下的自由振动响应。利用Hamilton原理推导热冲击下轴向运动FGM梁的自由振动控制微分方程,并采用分离变量法求解一维热传导方程。通过微分求积法(DQM)在梁的长度方向进行离散,将原方程转化为四阶广义特征值问题,求解FGM梁自由振动的无量纲固有频率并进行特性分析。考虑了不同热冲击载荷,不同梯度指数和不同轴向运动无量纲速度对FGM梁自振频率的影响。结果表明:热冲击载荷越大,对降低FGM梁的固有频率的效果越明显;在轴向运动速度和热流输入不改变的情况下,逐渐增大材料梯度指数会使FGM梁的固有频率随之减小;FGM梁对热冲击短时间内有减缓作用,相对于均匀材料一阶失稳所需时间更长,受到热冲击的FGM梁在轴向运动时也更快达到失稳状态。  相似文献   

8.
在两端简支边界条件下,给出了Levinson高阶剪切变形理论下功能梯度材料(FGM)梁的固有频率与参考均匀Euler-Bernoulli(E-B)梁的固有频率之间的解析转换关系。假设FGM梁的材料性质沿着梁的高度任意连续变化,通过分析FGM Levinson梁和均匀E-B梁的自由振动控制方程以及边界条件在数学上的相似性,推导出了用参考均匀E-B梁的固有频率表示的FGM Levinson梁的固有频率的解析式;从而,将复杂的耦合微分方程边值问题的求解简化为一些与梁的材料非均匀特性及几何特性有关的系数的计算问题。从而实现了Levinson剪切变形理论下FGM梁的振动响应的经典化和均匀化表示,可为工程应用提供便利。  相似文献   

9.
基于绝对节点坐标法(absolute nodal coordinate formulation,ANCF)研究了均质变截面Euler-Bernoulli拱的面外弯扭振动的振动特性。建立了考虑面外弯曲和扭转的均质的振动模型,在总体惯性坐标系下,将它划分为若干个变截面拱单元,给出单元的动能、应变能以及外力势能的表达式,得到了单元质量矩阵和刚度矩阵,进而获得了拱的总体的质量矩阵和刚度矩阵。应用Lagrange方程建立了拱的弯扭振动微分方程。数值计算了两端固定的等截面圆弧拱和变截面圆弧拱的前三阶频率,画出了相应的振型图,分析了变截面圆弧拱的中心角、半径、高宽比以及均布径向载荷对其振动特性的影响规律;数值计算了两端固定的等截面和变截面抛物线型非圆弧拱的前三阶频率,画出了相应的振型图。  相似文献   

10.
横观各向同性功能梯度材料矩形板的自由振动   总被引:16,自引:0,他引:16  
考察了沿厚度方向材料和为非均匀的功能梯度横观各向同性矩形板的自由振动。通过引入两个位移函数和两个应力函数导出了两个独立的变系数状态方程,进一步利用分层反似理论,将变系数状态方程为常纱数状态方程并求解,发现存在两类的自由振动形式:第一类对应纯板内振动,第二类对应一般的弯曲振动。给出了数值结果,讨论了材料梯度指标对固有频率的影响。  相似文献   

11.
研究了由陶瓷和金属两种材料组成的功能梯度材料(FGM)中厚圆板的自由振动问题。基于考虑横向剪切变形中厚板的几何方程、物理方程及平衡方程,建立了以中面转角和横向位移为基本未知量的功能梯度中厚圆板轴对称自由振动问题的控制方程;假定功能梯度中厚圆板的材料性质方向按照幂函数连续变化规律;采用打靶法数值求解所得非线性两点边值问题出,获得了多种边界下功能梯度中厚圆板的无量纲自然频率以及振动模态。讨论了材料梯度指数、板的厚度以及边界条件对自然频率的影响。  相似文献   

12.
变截面圆拱的自由振动   总被引:3,自引:0,他引:3  
本文应用传递矩阵法研究了变截面圆拱的自由振动。用解析法推导了等截面圆拱单元的精确传递矩阵,再应用传递矩阵原理建立变截面圆供自由振动的特征方程。该法具有计算简单、节约内存的优点,可方便地用于实际结构计算和设计。  相似文献   

13.
基于一阶剪切理论,研究四边简支正交各向异性功能梯度材料(FGM)板的自由振动和受迫振动。假设剪应力沿厚度方向呈抛物线分布,利用剪切应变能与剪切余能相等原理,得到正交各向异性功能梯度平板的剪切修正系数。利用虚位移原理得到功能梯度平板运动方程,并采用Navier方法对运动方程进行求解。通过与有关文献及有限元计算结果对比,验证该方法的正确性。在此基础上,分析厚度方向上由纤维和基体按照不同体积梯度分布的三种(P-,S-,C-FGM)平板的固有振动和受激振动特性,结果表明纤维体积分数变化区间越大,梯度型式及梯度指数对其振动特性影响越显著;纤维体积分数关于平板中面反对称分布(S-FGM)时,平板振动特性受梯度指数影响较小。  相似文献   

14.
王幸  钟强  李翱  陈海波 《振动与冲击》2022,(12):178-187
研究的目的是将能量辐射传递方法(RETM)拓展应用于功能梯度材料(FGM)耦合梁的高频振动响应分析。在RETM理论中,FGM耦合梁的振动响应由能量密度和功率流强度表示,振动波场由激励点实源产生的直接场与边界虚源产生的反射场叠加而成。由FGM梁微元的能量平衡推导了能量密度及功率流强度的核函数,利用耦合处的力平衡以及位移连续性推导了能量传递系数,根据边界功率流平衡确定了边界虚源强度。数值算例计算结果与波传播分析方法(WPA)的解析解进行对比,验证了所建立模型的正确性。最后,分析了梯度指数n对FGM耦合梁能量传递系数以及高频振动响应的影响,发现n的影响主要集中在n 0~1。  相似文献   

15.
基于二维弹性理论和Hamilton原理,假设材料物理性质随温度变化且沿圆环板径向按照幂律梯度分布,导出了温度影响下FGM薄圆环板面内自由振动的运动微分方程。用微分求积法(DQM)计算了温度影响下FGM圆环板面内自由振动的无量纲频率,并与各向同性材料圆环板面内自由振动的无量纲频率进行了比较,说明该分析方法的有效性。同时考虑了沿圆环板径向均匀升温和非均匀升温两种情况下,几何参数、材料性质和温度变化对面内自由振动频率的影响。  相似文献   

16.
结合精细积分和传递矩阵方法,对变厚度圆柱壳的自由振动进行计算分析。该方法基于圆柱壳的基本微分方程,推导得到关于位移内力向量的一阶齐次偏微分方程,采用精细积分求得场传递矩阵,将其进行组装得到总传递方程,根据边界条件求解总传递方程中系数矩阵的行列式,计算得到变厚度圆柱壳的固有频率。将计算结果与有限元结果进行对比,验证方法的准确性及有效性。同时探究了边界条件、厚度变化形式、厚度变化系数及长径比对自由振动的影响规律。  相似文献   

17.
地震波、冲击波、环境振动激励会通过地基基础传递到拱上,致使拱发生动力失稳失去承载能力。为深入研究拱在基础竖向激励下的动力稳定性,该文基于能量法,建立了基础竖向激励下圆弧拱平面内动力稳定能量方程,利用哈密顿原理得到了拱面内径向和切向振动的耦合控制方程,求解了圆弧拱平面内失稳前的动轴力与动弯矩解析解。引入拱轴线不可压缩假设,解决了圆弧拱平面内动力控制方程的解耦问题。利用伽辽金法建立了基础竖向多频激励下圆弧拱平面内二阶常微分动力稳定方程,运用多尺度法推导了基础竖向多频激励下圆弧拱平面内动力失稳的临界激励频率解析公式,得到了圆弧拱同时发生一阶反对称参数共振和二阶正对称共振失稳的动力不稳定域,并利用有限元数值分析验证了理论解析解的正确性。进一步分析了拱矢跨比、长细比和圆心角对动力不稳定域的影响。  相似文献   

18.
采用一种改进傅立叶级数方法建立了热环境下弹性边界约束FGM圆环薄板面内振动特性分析模型。基于平面弹性理论应力-应变关系推导了热环境下FGM圆环板面内振动能量原理方程,其中,弹性边界条件通过边界弹簧沿边界分布进行模拟,任意边界条件可以相应设置刚度系数获得。为了改善面内耦合位移场函数在径向边界处连续微分特性,圆环板面内位移径向分量构造为标准傅里叶级数与边界光滑多项式的叠加形式。结合RayleighRitz步骤,热环境下弹性边界约束FGM圆环板结构模态信息可以通过求解一个标准特征值问题而全部得到。随后,通过给出相关数值算例对所建立模型进行了验证,并分析了复杂边界约束情况下圆环板结构面内振动特性的影响。在此基础上,继续探讨并研究了热环境条件、功能梯度材料指数、弹性边界约束刚度等重要参数对FGM圆环薄板面内振动特性的影响规律,为人们全面理解此类复杂结构动力学特性提供了有效的模型基础和分析手段。  相似文献   

19.
针对压电功能梯度板的静力学问题,建立了一种基于三阶剪切变形理论的等几何分析求解方法.其中,定义功能梯度板的材料属性为板厚方向的幂函数分布,并假设压电功能梯度板中的机械位移场与电势场相互独立.利用压电材料的第二类本构方程以及哈密顿变分原理,推导出压电功能梯度板的相关等几何有限元方程.在压电功能梯度板的自由振动分析中,研究...  相似文献   

20.
功能梯度材料梁在后屈曲构型附近的自由振动   总被引:1,自引:1,他引:0       下载免费PDF全文
基于轴线可伸长杆的几何非线性理论,建立了由陶瓷和金属两种材料组成的功能梯度(FGM)梁在轴向载荷作用下后屈曲横向自由振动的精确模型,采用打靶法数值求解了一端可移简支一端固定的功能梯度梁在后屈曲附近的小振幅自由振动,获得了线性振动的响应,给出了不同梯度指标下FGM梁前三阶固有频率与载荷之间的特征关系曲线.数值结果表明,屈曲前各阶频率随轴向力的增加而降低,而屈曲后轴向力对各阶频率影响不同  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号