首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

This study focuses on the hygroscopic properties of submicrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth factor (Gf) was measured when taken from a dehydrated to a humidified state for particle diameters between 30–350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar diameter growth and the Gf at RH = 90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.5 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovski-Stokes-Robinson (ZSR) mixing rule and a chemical composition of potassium salts only, taken from ion chromatography analysis of filter and impactor samples (KCl, K2SO4, and K2CO3). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluted with hot particle-free air, the fractal-like structures remained intact until humidified in the H-TDMA. A method to estimate the fractal dimension of the agglomerated combustion aerosol and to convert the measured mobility diameter hygroscopic growth to the more useful property volume diameter growth is presented. The fractal dimension was estimated to be ~ 2.5.  相似文献   

2.
The nature of atmospheric aerosols is extremely complex and often requires advanced analytical tools for the determination of its physical and chemical properties. In particular, the interaction of particles with atmospheric water is a complex function of both particle size and composition. The ability of a particle to grow in a humid environment can be measured by humidity tandem differential mobility analyzing techniques (H-TDMA). In this article, we present a new development combining thermo-desorption and humidification aerosol conditioning in series that allows to measure changes in the hygroscopic behavior of aerosol at 90% relative humidity (RH) after conditioning of the particle by thermo-desorption to a temperature between 25°C and 300°C. The main feature of this system, named Volatility Hygroscopic—Tandem Differential Mobility Analyzer (VH-TDMA), is to allow for rapid (10 minutes) series of scans to control particle response to 1-thermal conditioning, 2- RH increase to 90% and 3—a combination of both thermal and RH conditioning. The VH-TDMA is, therefore, suited to investigate particle ageing through a simple coupling of H-TDMA and V-TDMA performances.

The aim of the present article is to describe the instrument design and to validate its performances by focusing on the measurement of hygroscopic behavior of pure inorganic particles such as sodium chloride or ammonium sulfate, as well as internally mixed organic-inorganic particles. Based on laboratory experiments and applications to natural aerosols, we show that the VH-TDMA system can be used to investigate the hygroscopic properties of the non-volatile fraction of ambient sub-micrometer aerosols in the range of 20 to 150 nm and the influence of the more volatile fraction of the particle on hygroscopic growth.  相似文献   

3.
Dimethylamine (DMA) and sulfuric acid (SA) are the important constituents of atmospheric aerosols. To accurately predict the behavior of DMA-containing aerosol systems, exact thermodynamic models are needed. The applicability of these models needs to be tested carefully in different experimental settings to continuously validate and improve their performance. In this work, the Extended Aerosol Inorganics Model (E-AIM) was used to simulate the hygroscopicity of aerosol particles generated from five different aqueous DMA-SA solutions. The applicability of the model was tested in the 10–200?nm size range and from DMA-SA molar ratios ranging from 1:3 to 2:1. The aerosol hygroscopic growth at 0–80% RH was determined with two tandem differential mobility analyzers, and the composition of the generated particles was measured with the Aerosol Mass Spectrometer (AMS), which revealed that the particles contained also ammonium. The model accurately captured the hygroscopicity for particles larger than 80?nm. With particles smaller than 80?nm, the model underestimated the hygroscopicity in all the studied experimental conditions. An increase in hygroscopicity parameter κ with decreasing particle size implied a plausible base evaporation in the experimental setup, which in turn may have affected the modeled hygroscopicity as the composition of the smallest particles may have differed from the AMS measurements. Coupling E-AIM to a dynamic evaporation model, however, could not produce compositions whose modeled hygroscopic behavior would match the measured hygroscopic growth at smaller sizes. Our results, therefore, suggest that DMA thermodynamics are not modeled correctly in E-AIM or there exists uncertainty in the physicochemical parameters.

© 2018 American Association for Aerosol Research  相似文献   

4.
The first wetting layer on solid nanoparticles has direct implications on the roles these particles play in industrial processes and technological applications as well as in the atmosphere. We present a technique for online measurements of the adsorption of the first few water layers onto insoluble aerosol nanoparticles. Atomized fumed silica nanoparticles were dispersed from aqueous suspension and their hygroscopic growth factors (HGF) and number of the adsorbed water layers at subsaturated conditions were measured using a nanometer hygroscopic tandem differential mobility analyzer (HTDMA). Particle morphology was characterized by electron microscopy and particle density was determined by mobility analysis. The HGFs of the size-selected particles at mobility diameters from 10 to 50 nm at 90% relative humidity (RH) varied from 1.05 to 1.24, corresponding to 2–6 layers of adsorbed water. The morphology of the generated fumed silica nanoparticles varied from spheres at 8–10 nm to agglomerates at larger diameters with effective density from 1.7 to 0.8 g/cm3 and fractal dimension of 2.6. The smallest spheres and agglomerates had the highest HGFs. The smallest particles with diameters of 8 and 10 nm adsorbed two to three water layers in subsaturated conditions, which agreed well with the Frenkel, Halsey, and Hill (FHH) isotherm fitting. In comparison to the small spheres or large agglomerates, the compact agglomerate structure containing a few primary particles increased the number of adsorbed water layers by a factor of ~1.5. This was probably caused by the capillary effect on the small cavities between the primary particles in the agglomerate.  相似文献   

5.
Airborne mineral dust particles contribute a significant fraction to the total aerosol mass, thus they make a substantial contribution to the Earth's radiative budget by direct scattering and absorption of radiation. Quantifying their contribution is complicated by the variability of optical properties as a function of water uptake. To improve understanding, we directly measured the relative humidity (RH) dependence of extinction [fRHext(RH, Dry)] for three key silicate clay components (illite, kaolinite, and montmorillonite) of mineral dust aerosols through cavity ring-down spectroscopy at 532 nm. The three clays studied show significant differences in fRHext(RH, Dry) at three RH values, and reasons for this are explored. With 68% RH as an example, we used the fRHext(RH, Dry) and Mie theory to calculate a growth factor for comparison with other measurement techniques. Humidified tandem differential mobility analyzer and quartz crystal microbalance growth factors from the literature are larger than our optical measurements indicate. An apparent decrease in particle size calculated from optical measurements for illite and kaolinite was further investigated by determining the aerosol electrical mobility size distribution of 68% RH and dry clay particles at that indicated shrinkage of approximately 10% at elevated humidity. Direct optical measurement has advantages because the effects of irregular shape and internal voids are observed. Our calculated growth factors provide a lower limit and can be incorporated into climate models in conjunction with other results to reduce the uncertainty associated with the optical response to water uptake on clay aerosols.  相似文献   

6.
The influence of drying rate on the dynamic shape factor χ of NaCl particles was investigated. The drying rate at the efflorescence relative humidity (ERH) of 45% was controlled in a laminar flow tube and varied from 5.5 ± 0.9 to 101 ± 3 RH s–1 at ERH, where RH represents one percent unit of relative humidity. Dry particles having mobility diameters of 23–84 nm were studied, corresponding to aqueous particles of 37–129 nm at the RH (57%) prior to drying. At each mobility diameter and drying rate, the critical supersaturation of cloud-condensation activation was also measured. The mobility diameter and the critical supersaturation were combined in an analysis to determine the value of χ. The measured values varied from 1.02 to 1.26. For fixed particle diameter the χ value decreased with increasing drying rate. For fixed drying rate, a maximum occurred in χ between 35- and 40-nm dry mobility diameter, with a lower χ for both smaller and larger particles. The results of this study, in conjunction with the introduced apparatus for obtaining quantified drying rates, can allow the continued development of a more detailed understanding of the morphology of submicron salt particles, with the potential for the follow-on development of quantitative modeling of evaporation and crystal growth at these dimensions.  相似文献   

7.

The hygroscopic behavior of Pasadena, CA aerosol was continuously measured from August 15 to September 15, 1999 using a tandem differential mobility analyzer. Two dry particle sizes were sampled, 50 nm and 150 nm in diameter; humidification of the dry aerosol was carried out at 89% relative humidity. Complex growth patterns were observed for both size modes, with aerosol distributions splitting from a single mode at times to more than 6 modes. Diurnal profiles for the observed multiple peaks were noted, with the greatest number of measurable growth modes being found during the late night and predawn hours for 50 nm particles. For 150 nm particles, more modes were present during the afternoon hours, with the humidified aerosol becoming bimodal during the late night/early morning hours. Growth factors, defined as the ratio of humidified particle diameter (at 89%) to dry diameter, were determined for modes with significant number concentrations. Average growth factors over the sampling period for the 2 particle sizes ranged from 1.0 to 1.6. Hygroscopic growth increased in the latter half of the sampling period when forest fires were present. In short, treating this complex urban aerosol as a combination of "less" and "more" hygroscopic fractions is an oversimplification.  相似文献   

8.
Aerosol water content plays an important role in aqueous phase reactions, in controlling visibility, and in cloud formation processes. One way to quantify aerosol water content is to measure hygroscopic growth using the hygroscopicity tandem differential mobility analyzer (HTDMA) technique. However, the HTDMA technique becomes less reliable at relative humidity (RH) >90% due to the difficulty of controlling temperature and RH inside the second DMA. For this study, we have designed and implemented a new HTDMA system with improved temperature and RH control. Temperature stability in the second DMA was achieved to ±0.02°C tolerance by implementing active control using thermoelectric heat exchangers and PID control loops. The DMA size resolution was increased by operating high-flow DMA columns at a sheath:sample flow ratio of 15:0.5. This improved size resolution allowed for improving the accuracy of the RH sensors by interspersing ammonium sulfate reference scans at high frequency. We present growth factor data for pure compounds at RH up to 99% and compare the data to theoretical values and to available bulk water activity data. With this HTDMA instrument and method, the osmotic coefficients of spherical, nonvolatile aerosols of known composition between 30 and 200 nm in diameter can be determined within ±20%. We expect that data from this instrument will lead to an improvement of aerosol water content models by contributing to the understanding of aerosol water uptake at high RH.

Copyright 2013 American Association for Aerosol Research  相似文献   

9.
We report on a new instrument developed to perform rapid, size-resolved aerosol hygroscopicity measurements. The differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP) employs differential mobility analysis in-concert with multiple humidification and optical sizing steps to determine dry optical size and hygroscopic growth factors for size-selected aerosols simultaneously at three elevated relative humidities. The DASH-SP has been designed especially for aircraft-based measurements, with time resolution as short as a few seconds. The minimum particle diameter detected with 50% efficiency in the optical particle counters (OPCs) is 135 ± 8 nm, while the maximum detectable particle diameter is in excess of 1 μm. An iterative data processing algorithm quantifies growth factors and “effective” refractive indices for humidified particles using an empirically derived three-dimensional surface (OPC pulse height–refractive index–particle size), based on a calculated value of the “effective” dry particle refractive index. Excellent agreement is obtained between DASH-SP laboratory data and thermodynamic model predictions for growth factor dependence on relative humidity for various inorganic salts. Growth factor data are also presented for several organic acids. Oxalic, malonic, glutaric, and glyoxylic acids grow gradually with increasing relative humidity up to 94%, while succinic and adipic acids show no growth. Airborne measurements of hygroscopic growth factors of ship exhaust aerosol during the 2007 Marine Stratus/Stratocumulus Experiment (MASE II) field campaign off the central coast of California are presented as the first report of the aircraft integration of the DASH-SP.  相似文献   

10.
Abstract

Direct ultraviolet photoionization electrically charges particles using a mechanism distinct from diffusion charging. The purpose of this study is to evaluate aerosol photoemission theory as a function of aerosol particle size, concentration, material, and morphology. Particles are classified using an aerodynamic aerosol classifier (AAC) and subsequently measured with a scanning mobility particle sizer (SMPS) and photoionization measurement system in parallel. This configuration allows direct comparison of photo-emission from high concentrations of initially neutral, monodisperse aerosols with different morphologies or materials. Under all examined conditions, the overall photoelectric yields of particles of self-similar material (silver and unconditioned soot) and morphology (sintered spheres and agglomerates) are each linearly proportional to the second moment of the mobility-equivalent diameter distribution, even in the transition regime (mobility diameter 30–200?nm), with agglomerate silver particles resulting in 5× higher photoelectric yield than unconditioned soot from a propane flame. It is shown for the first time that the photoelectric yield is significantly higher (2.6×) for fractal-like agglomerate silver particles than sintered, close-packed spherical particles of the same material and mobility-equivalent diameter, which is inferred to be due to the larger material surface area exposed externally to the particle surroundings. It is demonstrated that photoelectric measurements of aerosols reflect the photoelectrically active surface area which depends on the particle morphology and therefore the state of sintering.

Copyright © 2019 American Association for Aerosol Research  相似文献   

11.
A postplasma neutralizer for submicron particles size measurements by mobility analysis has been evaluated. Bipolar ion currents have been measured downstream a dielectric barrier discharge (DBD) to estimate the ion fluxes at the inlet of charging volume and the ni·τ product that define the theoretical maximal concentration that can be neutralized. Charge distributions were measured versus DBD voltage, aerosol diameter and concentration for monodisperse aerosols. It is confirmed that the charge distribution of particles depends on the ratio of initial positive and negative ion currents controlled by the DBD voltage leading to a tuneable mean charge of aerosol in this post-DBD bipolar charger. As expected from Gunn's law, the mean charge and the variance are proportional to particle diameter above 50 nm and independent of the aerosol concentration. The size distributions measured with 85Kr and post-DBD neutralizer present the same modal diameters and a maximal overestimation of the total concentration of 10%, for aerosol from 15 to 730 nm with concentrations up to 6 × 1012 m?3. This post-DBD bipolar charger can be used for submicron aerosol neutralization and thus for scanning mobility particle sizer size distribution measurements in air as well as in nitrogen to suppress ozone downstream DBD.

Copyright © 2017 American Association for Aerosol Research  相似文献   

12.
The Tandem Differential Mobility Analyzer (TDMA) technique coupled with aerosol humidification has been widely used for studying aerosol hygroscopicity. In this study, we evaluate the performance of a commercial Humidified TDMA (BMI HTDMA, Model 3002) with respect to DMA sizing, relative humidity (RH) control, and growth factor (GF) measurements. Unique features of this particular HTDMA include a diffusion-based particle humidifier, a DMA design allowing selection of particles up to 2 μm diameter at only 5600 volts, and the ability to study the complete deliquescence and efflorescence cycle. The sizing agreement between DMA 1 and 2 was within 2% over the 35 to 500 nm diameter range. The measured TDMA responses agreed well with theoretical calculations. The RH control and stability were tested at a suburban field site in Hong Kong. The system achieved RH equilibrium in less than 4 min when changing the RH set point. With indoor temperature changes of less than 1°C per hour, the RH control of the system was very stable at 90%, within 1% RH deviation, as confirmed by GF measurements on ammonium sulfate (AS) aerosols performed on separate days. The hygroscopic properties of various pure aerosols were examined and the results agreed well with model predictions. The application of the BMI HTDMA for field measurements was also demonstrated. Two modes were resolved from the GF distributions at 90% RH and variable hygroscopic growth with changing RH was observed.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
The collection efficiencies of submicron aerosol particles using a two-stage, dielectric barrier discharge (DBD) type electrostatic precipitator have been reported previously [Byeon et al. (2006). Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge. Journal of Aerosol Science, 37, 1618–1628]. In this paper, the charge distributions of aerosol dioctyl sebacate (DOS) particles, which had a mobility equivalent diameter of 118, 175, and 241 nm and were charged in a DBD charger, were examined using a tandem differential mobility analyzer (TDMA) system at applied voltages of 9–11 kV and frequencies of 60–120 Hz. The mean number of elementary charges for positively or negatively charged particles increased slightly with increasing applied voltage or frequency. However, the number of elementary charges increased significantly with increasing particle size. At any applied voltage and frequency, the charge distributions of these particles of these sizes indicated asymmetric bipolar charging. The positive-to-negative charge ratios were 10.4, 4.7, and 3.0 for particle sizes of 118, 175, and 241 nm, respectively, at a DBD voltage and frequency was 9 kV and 60 Hz, respectively. Fluorometric analysis showed that average positive-to-negative charge ratios were 11.5, 4.9, and 3.7 for particle sizes of 118, 175, and 241 nm, which agrees well with the TDMA results. Further fluorometric analyses with larger particles (514 and 710 nm) and higher frequencies (1 and 2 kHz) showed that the positive-to-negative charge ratio reached almost unity with increasing particle size or frequency.  相似文献   

14.
The nano aerosol mass spectrometer (NAMS) was deployed at a coastal site in Lewes, Delaware, to measure the composition of 21 nm mass normalized (18 nm mobility) diameter nanoparticles during new particle formation (NPF) events. NAMS provides a quantitative measure of the atomic composition of individual nanoparticles. NAMS analysis of ambient particles showed only a small change in particle composition during NPF events in Lewes compared with off-event (before and/or after the event). The N mole fraction increased 15% on-event, whereas the C mole fraction decreased 25%, suggesting an enhanced inorganic component to the aerosol during NPF. The measured changes in atomic composition constrain the possible changes in molecular composition. To explore these constraints, an apportionment algorithm was applied to the atomic composition data. This algorithm partitions the atomic composition into sulfate, nitrate, and ammonium on the basis of the atomic abundance of S, N, and O and into organic matter on the basis of C and residual O after removing contributions to inorganic species. Particles were fully neutralized both on- and off-event. The nitrate to sulfate ratio during NPF ranged from 0.7 to 1.4, suggesting that ammonium nitrate is important to particle growth in this environment. Nonetheless, nanoparticles had a significant organic fraction, and upper limits for cationic amine content were determined. The relatively small changes in total particle composition on-event versus off-event suggest that observed changes in particle hygroscopicity and volatility during NPF at other locations may be linked to subtle changes in particle composition or to shifts in the character of the organic content.  相似文献   

15.
By means of a newly designed portable aerosol mass spectrometer SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) for the analysis of single atmospheric aerosol particles we investigated the system performance in dependency on two different aerodynamic lenses (Liu and Schreiner type) capable of focusing particles with diameters ranging from 80 nm to 800 nm and 300 nm to 3000 nm, respectively. By using the pressure regulated Schreiner lens, the instrument is independent of variations in atmospheric pressure which would lead to changing dynamical properties of the aerosol particles. Active pressure control inside the inlet system facilitates airborne measurements without complicated corrections. With the Liu setup no pressure regulation was used. Here the overall efficiency of our instrument was 7% while with the Schreiner setup 2% was achieved. The Liu lens setup is optimal for measuring submicron particles at low particle concentrations. To detect supermicron particles the Schreiner lens setup is favored. Together with these experiments we present key details of the SPLAT setup and its characterization. Our instrument is able to measure simultaneously the size and the chemical composition of individual aerosol particles larger than 300 nm in diameter. It uses forward scattered light of single aerosol particles at two positions to determine their vacuum aerodynamic diameter from the flight time between the two lasers. Chemical analysis of the particles is done by laser ablation mass spectrometry utilizing a bipolar time-of-flight mass spectrometer.  相似文献   

16.
The hygroscopic tandem differential mobility analyzer (HTDMA) has been frequently used to measure the hygroscopic properties of atmospheric aerosols at a fixed high relative humidity (RH) of about 90%. To evaluate if such measurements could be used to determine the hygroscopicity of aerosols at lower RH, simultaneous hygroscopic growth factor (GF) and size-resolved composition measurements were made with an HTDMA and a high-resolution aerosol mass spectrometer (HR-AMS), respectively, at a coastal site in Hong Kong from January to June and in August 2012. A total of 58 cycles of dehydration (decreasing RH) and hydration (increasing RH) of 100 nm and 200 nm particles with organic-to-inorganic mass ratio ranging from 0.19 to 1.97 were measured at RH = 10–93%. The Kappa (κ) equation developed by Petters and Kreidenweis in the year 2007 was used to determine (i) κ at individual RHs (κRH) and (ii) best-fit κ covering the range of RHs measured (κf) for the more-hygroscopic (MH) mode, which describes more than 80% of the particles in each cycle, during dehydration. Overall, κ at 90% RH or above (κ>90) fell between 0.18 and 0.48, and was within 15% of κf in 83% of the datasets. Regression analysis between κ>90 or κf and AMS mass fractions showed that κ was positively correlated with sulfate but negatively correlated with organic and nitrate. In most cases, κRH increased as RH decreased and the average increase in κ was 45% from 90% RH to 40% RH, but these differences yielded insignificant changes in the GF-RH curves. The Zdanovskii-Stokes-Robinson (ZSR) estimated κ were mostly within 20% of κ>90 and κf. GF predictions using the empirical correlation of κ with AMS mass fractions or the ZSR estimated κ were within 10% of additional measurements and hence κ>90 is useful for predicting GF at lower RHs.

Copyright 2015 American Association for Aerosol Research  相似文献   

17.
It is important to develop a simple and fast method for measuring the sizes of submicron particles in both laboratories and fields. In our previous studies, Park, An, and Hwang [(2007). Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. Journal of Aerosol Science, 38, 420–430] and Park, Kim, An, and Hwang [(2007). Real-time measurement of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. Journal of Aerosol Science, 38, 1240–245], we introduced methodologies that our lab made unipolar charger could lead to detection times of under 5 s in conjunction with an electrometer and a condensation particle counter (CPC), and under 3 s with two electrometers.However, both methodologies require an appropriate assumption of the geometric standard deviation of particle sizes. In this paper, we introduce a methodology for determining the geometric standard deviation of particle sizes as well as the geometric mean diameter and the total number concentration of particles. For this purpose, a diffusion charger that consisted of discharge zone, mixing and charging zone, and three flow channels for obtaining three different residence times and average charges of particles in the channels, was designed and tested. For determining the average particle charge, various methods including theoretical calculations and the tandem differential mobility analyzer (TDMA) method were used. The results obtained from the different methods agreed well with each other. To compare the size distribution with the data that were measured through a scanning mobility particle sizer (SMPS), sodium chloride (NaCl) particles were used. The estimated results by using a data inversion algorithm were less than those measured by SMPS by around 22% for the total number concentration and 10% for both the geometric mean diameter and the geometric standard deviation. Furthermore, the detection time was under 3 s.  相似文献   

18.
The key characteristics of an air filter—flow resistance and filtration efficiency—are strongly affected by captured particles. The impact of exposing loaded heating, ventilating, and air conditioning air filters to a relative humidity (RH) other than that experienced during loading is investigated to develop an understanding of the role of RH throughout filter operation. Flat sheets of commercial filter media were loaded with hygroscopic, non-hygroscopic, or a mixture of particles in a laboratory apparatus. When filters loaded with hygroscopic particles in dry air were exposed to an elevated RH of 40%, the flow resistance reduced by up to 47%, depending on the filter being tested. Investigation of filter efficiency before and after changes in RH in the same samples shows reductions of up to 11 percentage points in the 130-nm size range. Further increasing RH causes additional drops in flow resistance and efficiency whereas reverting back to a lower humidity does not change the filter characteristics. The irreversibility of the particle-loaded filter characteristics implies that the RH increases are associated with an irreversible change in the particle structure. The response to humidity was reduced if an aerosol mixture of hygroscopic and non-hygroscopic particles is used. Exposure of filters loaded with only non-hygroscopic particles does not show the same dependence on RH. Small increases in growth factor for RH changes below deliquescence, causing morphological changes in captured particle aggregates, is a potential explanation for the changes observed.

Copyright 2015 American Association for Aerosol Research  相似文献   

19.
Existing aerosol particle mass classifiers (PMCs) can classify particles having masses down to ca. half an attogram (i.e., 10?18 g), which corresponds to a diameter of ca. 10 nm for spherical particles with standard density (1 g/cm3). Here, we describe an improved design of such a classifier, namely, the nano-PMC, which can classify particles with masses down to 20 zeptograms (10?21 g). The response of the classifier was characterized with spherical polystyrene-latex and ammonium sulfate particles, produced by atomization and mobility classification. Measured responses were compared with predictions by a numerical trajectory-based model that considers particle diffusivity. Measurements and predictions of the mean mass of the particles penetrating the classifier agreed within experimental uncertainty (<6%). Differences in the spectrum width could be attributed to recirculation flows occurring in the classification channel.

To demonstrate the capabilities of a nano-PMC, we used it in a tandem configuration with a differential mobility analyzer to determine (1) the size-dependent shape factor of cubic sodium chloride particles having diameters from 15 to 120 nm, and (2) the apparent density and mass–mobility coefficient of coalesced and aggregated silver particles generated by spark ablation. Measurements of the shape factor of the cubic sodium chloride particles show good agreement with previous observations. Coalesced silver particles exhibited an apparent density that was lower compared with that of bulk silver, suggesting a slightly non-spherical particle shape. The mass–mobility scaling exponent of aggregated silver particles determined by the measurements was 2.3 ± 0.1.

Copyright 2015 American Association for Aerosol Research  相似文献   

20.
Enhanced excipient growth (EEG) is a newly proposed respiratory delivery strategy in which submicrometer or nanometer particles composed of a drug and hygroscopic excipient are delivered to the airways in order to minimize extrathoracic depositional losses and maximize lung retention. The objective of this study was to develop a validated mathematical model of aerosol size increase for hygroscopic excipients and combination excipient–drug particles and to apply this model to characterize growth under typical respiratory conditions. Compared with in vitro experiments, the droplet growth model accurately predicted the size increase of single component and combination drug and excipient particles. For typical respiratory drug delivery conditions, the model showed that the droplet size increase could be effectively correlated with the product of a newly defined hygroscopic parameter and initial volume fractions of the drug and excipient in the particle. A series of growth correlations was then developed that successively included the effects of initial drug and excipient mass loadings, initial aerosol size, and aerosol number concentrations. Considering EEG delivery, large diameter growth ratios (2.1–4.6) were observed for a range of hygroscopic excipients combined with both hygroscopic and nonhygroscopic drugs. These diameter growth ratios were achieved at excipient mass loadings of 50% and below and at realistic aerosol number concentrations. The developed correlations were then used for specifying the appropriate initial mass loadings of engineered insulin nanoparticles in order to achieve a predetermined size increase while maximizing drug payload and minimizing the amount of hygroscopic excipient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号