共查询到20条相似文献,搜索用时 0 毫秒
1.
针对任意边界条件下中心开口矩形板的自由振动特性研究问题,引入改进傅里叶级数方法,用改进傅里叶级数形式表示开口矩形板的位移容许函数,该级数形式具有收敛性好、精度高等特点,采用沿边界均匀分布的线性弹簧模拟任意边界条件,并结合位移连续条件和Rayleigh-Ritz能量泛函变分法,对未知傅里叶展开系数求极值将问题转化为求解一个标准特征值方程问题,通过求解方程可得到中心开口矩形板的固有频率及其对应振型;对不同边界组合不需重新推导公式,只需改变模拟弹簧刚度值即可,提高了效率,最后通过数值算例与有限元方法的计算结果进行对比分析以验证文中方法的有效性和精确性。 相似文献
2.
《振动与冲击》2019,(19)
提出一种基于改进傅里叶级数的方法,对矩形薄板在任意边界条件下自由振动特性进行求解。通过将薄板振动的位移函数表示成二维傅里叶余弦级数和辅助级数的线性组合,克服传统傅里叶级数法中薄板位移函数边界处不连续的缺陷;基于位移函数列出矩形薄板拉格朗日方程,然后通过Hamilton原理求解得到矩形薄板自由振动频率与相应位移函数的系数。计算结果与文献及有限元解吻合良好,方法准确可靠;此外,通过改变边界约束弹簧刚度模拟任意边界条件;大量计算表明,固支边界条件与弹性边界条件组合中,随着固支边条界范围增大,矩形薄板无量纲频率参数呈增大趋势;简支及自由边界条件与弹性边界条件组合中,随着弹性边条界的增多,矩形薄板无量纲频率参数呈增大趋势。 相似文献
3.
4.
5.
采用改进傅立叶级数的方法对任意弹性边界条件下的耦合板进行自由振动分析,将板的振动位移函数表示为标准的二维傅立叶余弦级数和辅助级数的线性组合。通过辅助级数的引入,解决了位移导数在边界不连续的问题。边界条件和耦合条件通过均匀布置的线性位移弹簧和旋转弹簧来模拟,通过改变弹簧刚度值可以实现任意边界条件和耦合条件的模拟。利用Hamilton原理建立求解方程,建立一个线性方程组,最终得到耦合板的控制方程的矩阵表达式,通过特征值分解可以求得固有频率。通过数值仿真分析计算并与有限元结果进行比较,验证了本方法的准确性。 相似文献
6.
7.
8.
本文应用拉格朗日乘子法,提出一种在已知各子结构模态信息条件下,求解加强筋任意布置的矩形板动态特性的有效方法。本文第一部分侧重于推导板上任意布置的加强筋与板组合时的变形协调条件。并在此基础上,通过引入拉格朗日乘子将板、梁组合结构的振动分析问题处理成一类无约束泛函变分问题,从而建立了组合结构的广义特征值问题。本文第二部分以一周边简支加筋板为计算实例,利用该方法求解了所研究对象的前三阶固有频率以说明其有效性。 相似文献
9.
基于改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对任意边界条件下环扇形板的面内自由振动特性进行计算分析,任意边界条件可采用沿各边界均匀分布的法向和切向线性弹簧来模拟。环扇形板的径向和切向位移函数被不变地表示为改进傅里叶级数形式,并通过引入正弦函数项来克服弹性边界的不连续或跳跃现象。将位移函数的傅里叶展开系数看作广义坐标,并采用瑞利-里兹方法对其进行求解,得到一个关于未知傅里叶系数的标准特征值问题。通过求解标准特征值问题而简单地求解环扇形板面内振动的固有频率及其振型。通过不同边界条件下环扇形板模型结果与文献解及有限元法结果相对比来验证了本文方法的正确性及可靠性。 相似文献
10.
采用改进傅立叶级数的方法对任意弹性边界条件下的单向变厚度薄板进行自由振动分析,将板的振动位移函数表示为标准的二维傅立叶余弦级数和辅助级数的线性组合。通过辅助级数的引入,解决了位移导数在边界不连续的问题,改进后的位移函数能够同时满足位移边界条件和力的边界条件。边界条件通过均匀布置的线性位移弹簧和旋转弹簧来模拟,改变弹簧刚度值可以实现不同边界条件的模拟。利用Hamilton原理和Rayleigh-Ritz法建立求解方程,得到变厚度板的控制方程的矩阵表达式,通过特征值分解可以求得固有频率和振型。通过数值仿真分析计算并与有限元及文献的结果进行比较,验证了本方法的准确性。 相似文献
11.
12.
13.
14.
15.
波纹夹芯板作为一种特殊的复合材料结构,边界条件对其振动特性有重要影响。根据不同剪切方式下的剪切变形理论和基尔霍夫经典板理论(CLPT),利用Hamilton原理建立波纹夹芯板的动力学方程。其中,波纹芯层等效成各向异性均质体。根据四边简支、四边固支、对边简支和固支、一边固支三边简支的边界条件,推导出位移形式的偏微分动力学方程。求解得到波纹夹芯板在不同边界条件下自由振动的固有频率,与有限元仿真结果进行对比,验证了理论结果的正确性。在此基础上,基于指数剪切变形理论(ESDT),分析了不同边界条件下波纹夹芯板的基频随材料参数和结构几何参数的变化规律。结果表明,材料和几何参数对不同边界条件下波纹夹芯板的振动特性有重要影响。相关研究结果将对波纹夹芯板在工程应用中的减振设计及优化分析提供一定的理论依据。 相似文献
16.
本文研究两对边简支,另两对边离散支承矩形的自由振动问题,推导出了用支点反力表示的矩形板自由振动的振型函数,即Green函数,利用支点处的位移相容性,确定支点反力和频率方程,可以求解任意阶的固有频率和振型。 相似文献
17.
18.
采用谱几何法建立了任意边界条件下弹性梁横向、纵向和扭转耦合振动分析模型。将弹性梁的横向、纵向和扭转振动位移函数分别描述为一种辅助函数为三角级数的改进傅里叶级数;在弹性梁两端引入边界约束弹簧组,通过改变其刚度值模拟任意边界条件;应用Hamilton原理从能量角度推导整个结构的拉格朗日函数;采用Ritz法对其进行求解。计算了弹性梁模型不同边界下前6阶固有频率,与文献解对比最大误差为0.02%,验证了该方法的正确性和较快的收敛性。该模型统一了弹性梁横向、纵向和扭转振动的位移函数表示形式和模态特性求解方程,通过改变边界约束弹簧刚度系数可以实现对弹性梁耦合振动特性进行调整,为弹性梁动力学性能优化提供了一种参数化的研究方法。 相似文献
19.
受压对称迭层矩形板的自由振动分析 总被引:1,自引:0,他引:1
根据受压的对称迭层矩形板自由振动的微分方程可以求得各种解析解来求解各种边值问题。迭层板有两种,一种是正交铺设,其方向与坐标轴平行,属正交异性板,当板的四边为简支时,可用双正弦级数来求解自由振动的各阶频率及其振型以及均匀受压的各阶临界载荷及其屈型。另一种是角铺设,属各向异性板,当两相邻边为自由,另两边为简支或固支时可用复数级数来求解其最低频率及其振型以及最低临界载荷及其屈型。此时其特征方程的根为两对复根,且可表成三角级数和双曲线级数,以满足边界条件。另外用代数多项式和双正弦级数组成的解来满足角点条件。在算例中计算了若干板受压或不受压的振动频率和临界载荷,并与其他文献进行了对比。 相似文献
20.
考虑板的横向剪切变形和转动惯量的影响,采用改进Fourier级数的方法对任意弹性边界条件下的中厚矩形板进行振动功率流分析。将板的横向振动位移和转角表示为标准的二维Fourier余弦级数和辅助级数的线性组合。通过辅助级数的引入,解决了位移函数和转角函数的导数在边界不连续的问题,从而使此法适用于任意的弹性边界条件。结合Hamilton原理和Mindlin理论建立求解方程,得到中厚矩形板振动方程的矩阵表达式。最后进行了数值仿真,得到了正弦点力作用下中厚板的功率流场图。 相似文献