首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work focuses on an experimental comparison of diesel emissions produced by three fuels: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester biodiesel fuel (B100), and a synthetic Fischer-Tropsch fuel (FT), practically free of sulfur and aromatic compounds, and produced in a gas-to-liquid process. The study was carried out using a 2.5 L direct injection common-rail turbodiesel engine operated at 2400 rpm and 64 N m torque (19% of maximum torque). The engine was tested with single and split (pilot and main) injections and without exhaust gas recirculation (EGR). The study has two objectives. The first objective is to investigate the impact of the start of injection (SOI) on performance and emissions of each fuel. The second objective is to study the isolated impacts of the test fuels on pollutant emissions by adjusting the injection parameters (SOI and fuel rail pressure) for each fuel, while producing practically the same combustion phasing. When the combustion phasing occurs similarly, this study has confirmed that the FT fuel can reduce all regulated diesel emissions under both single and split injection strategies. Finally, it has been confirmed that biodiesel can reduce particle mean diameter in comparison with BP15. However, higher PM mass emission for B100 has been observed under the condition of matched combustion phasing. The increase of the PM mass emission is probably due to the unburned or partially burned hydrocarbon (HC) emissions.  相似文献   

2.
Two potential strategies for reducing diesel emissions are exhaust aftertreatment and the use of reformulated or alternative fuels. Little is yet known about the impact on ultrafine particle emissions of combining exhaust aftertreatment with such increasingly common fuels. This paper reports ultrafine particle size distribution measurements for a study in which the impact of such fuels on emissions from a heavy duty diesel engine employing different aftertreatment configurations was evaluated. Eight different fuels were tested: Canadian No. 1 and No. 2 diesel; low sulfur diesel fuel; two different ultra low sulfur diesel fuels (< 30 ppm S); Fischer-Tropsch diesel fuel; 20% biodiesel blended with ultra low sulfur diesel fuel; and PuriNOx?. The fuels were tested in combination with four exhaust configurations: engine out, diesel oxidation catalyst (DOC), continuously regenerating diesel particle filter (CRDPF), and engine gas recirculation with CRDPF (EGR-DPF). In general, aftertreatment configuration was found to have a greater impact on ultrafine particle size distributions than fuel composition, and the effects of aftertreatment tended to be uniform across the entire particle size distribution. Steady state tests revealed complex behavior based on fuel type, particularly for PuriNOx. This behavior included bimodal particle size distributions with modes as low as 8–10 nm for some fuels. Unlike previous results for gravimetric PM from this study, no significant correlation for ultrafine emissions was found for fuel properties such as sulfur level.  相似文献   

3.
Seung Hyun Yoon 《Fuel》2011,90(10):3071-3077
This study was performed to investigate the effect of biogas-biodiesel fuel combustion on the emissions reduction and nanoparticle characteristics in a direct injection (DI) diesel engine. In order to apply the two biofuels, biogas was injected into a premixed chamber during the intake process by using two electronically controlled gas injectors, and biodiesel fuel was directly injected into combustion chamber by a high-pressure injection system. The in-cylinder pressure and rate of heat release (ROHR) were investigated under various fuel conditions for single-fuel (biodiesel) and dual-fuel (biogas-biodiesel) combustions. To evaluate the engine performances and exhaust emissions characteristics, the indicated mean effective pressure (IMEP) and exhaust emissions were also investigated under various test conditions. Furthermore, the particle number concentration and the size distribution of nanoparticles were analyzed by using a scanning mobility particle sizer (SMPS).In the case of dual-fuels, the peak combustion pressure and ROHR were gradually decreased with the increase of the biogas fraction in the dual-fuels. As the premixed ratios increased, ignition delay and combustion durations were prolonged compared to single-fuel mode. The dual-fuels combustion showed that the IMEP decreased slightly and maintained similar levels up to 20° BTDC due to the retarded combustion phase. The concentrations of NOx emissions were decreased for all injection timings as the premixed ratio (rp) increased. The soot emissions in dual-fuel operations were significantly lower than those in the single-fuel mode (rp = 0), and decreased gradually as the premixed ratio increased, regardless of injection timing. A lower nanoparticle size distribution was observed at all premixed ratios for dual-fuel combustion compared to those of the single fuel mode. The number distribution of both nuclei and accumulation modes also decreased with an increase in the biogas fraction. A slight reduction in the total particle number and total volume for all premixed ratios was observed as the injection timing increased from TDC up to 20° BTDC.  相似文献   

4.
The effect of the combustion mode on particle emission was analyzed both in the cylinder and at the exhaust of a direct injection (DI) Common Rail (CR) transparent research diesel engine by means of spectroscopic and conventional methods. The engine was equipped with a flexible electronic control unit (ECU) capable of operating up to 5 injections per cycle with different start of injection and dwell time allowing performing different combustion modes. The conventional diesel combustion, the homogeneous charge compression ignition (HCCI), and the low temperature combustion (LTC) modes were analyzed. In-cylinder broadband UV–visible scattering and extinction measurements were carried out to follow the particle formation and oxidation processes as well as to have information about their chemical nature and size distribution. The characterization of the particulate emission at the exhaust was performed by means of an electrical low pressure impactor (ELPI), for the counting and the sizing of the particles, and an opacimeter, for measuring the smoke opacity. The in-cylinder measurements highlighted that particles ranged from 3 to 100 nm whatever was the combustion mode. Nevertheless, particles produced by a conventional diesel combustion process principally consist of soot. Whereas particles formed during HCCI and LTC modes are composed mainly of organic compounds. The exhaust particle emissions depend on the combustion mode both in terms of size and number. A larger amount of particles smaller than 100 nm was emitted during HCCI and LTC modes with respect to the conventional one. Moreover, HCCI mode showed a strong accumulation mode.

Copyright 2012 American Association for Aerosol Research  相似文献   

5.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

6.
The aim of this study is to investigate the effects of dimethyl ether (DME) fuel on the engine performance and the exhaust emission reduction characteristics in a DME fueled four-cylinder diesel engine with a common rail injection system, as well as an injection characteristics and a spray behavior. The injection rate meter and the spray visualization system are utilized for the analysis of the injection characteristics and the spray behavior. Also, the modified four-cylinder diesel engine with 1.6 liter engine size is used for the investigation of the engine performance and the exhaust emission reduction characteristics of DME fuel.Based on the experimental investigation, it revealed that the injection quantity of DME fuel was larger than that of the ultra low sulfur diesel (ULSD) due to the high return fuel pressure at the same injection pressure and energizing duration. In this case, the injection quantity of DME fuel is increased by extension of real injection duration due to return fuel pressure.In combustion characteristics, the peak combustion pressure and the ignition delay of DME fuel are higher and faster than those of ULSD, respectively. The NOx emission of DME fuel shows slightly higher than that of ULSD at the same engine load condition, and the soot emission of DME fuel is nearly zero level. The oxygenated component and volatility of DME resulted in HC and CO emissions that were lower than those of diesel.  相似文献   

7.
Kuen Yehliu  Octavio Armas 《Fuel》2010,89(2):423-437
Few factors affect diesel combustion and emissions more significantly than the composition of the fuel and the fuel injection process. In this paper, both of these factors are considered by comparing conventional, synthetic and vegetable oil-derived diesel fuels and by comparing a single pulse injection and a split (pilot and main) injection process. This paper focuses on characterization of the combustion process and emissions produced by three substantially different diesel fuels: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl ester (B100), and a synthetic, practically free of sulfur and aromatic compounds, Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The study was carried out in a direct injection (DI) 2.5 L common-rail turbodiesel engine working at four engine operation modes, spanning conditions of most interest in the engine map. In all modes the engine was tested with single and split injection (pilot and main), with constant start of injection (SOI), and without exhaust gas recirculation (EGR). Using the results from thermodynamic analysis, this study confirms that the ignition character of the fuel affects the start of the combustion process, notably for the whole combustion process when the single injection is used, and during the combustion process after the pilot injection when the split injection is used. In general, the FT fuel can reduce both NOx and PM specific emissions in all modes under both single and split injection modes, bypassing the nitrogen oxides-particulate matter (NOx-PM) trade-off. Finally, this work confirms that biodiesel can reduce the particle concentration. However, in some cases an increase of PM mass emission has been observed and this increase of the PM mass emission is due to unburned or partially burned hydrocarbon (HC) emissions.  相似文献   

8.
Myung Yoon Kim  Chang Sik Lee   《Fuel》2007,86(17-18):2871-2880
The aim of this work was to investigate the effect of narrow fuel spray angle injection and dual injection strategy on the exhaust emissions of a common-rail diesel engine. To achieve successful homogeneous charge compression ignition by an early timing injection, a narrowed spray cone angle injector and a reduced compression ratio were employed. The combination of homogeneous charge compression ignition (HCCI) combustion and conventional diesel combustion was studied to examine the exhaust emission and combustion characteristics of the engine under various fuel injection parameters, such as injection timings of the first and second spray.The results showed that a dual injection strategy consisting of an early timing for the first injection for HCCI combustion and a late timing for the second injection was effective to reduce the NOx emissions while it suppress the deterioration of the combustion efficiency caused by the HCCI combustion.  相似文献   

9.
This study was carried out to characterize the engine-exhaust particulate emissions from a typical multipoint port fuel injection gasoline engine used in transportation sector. Though gasoline engine showed no visible tail pipe emissions yet its particle concentrations were comparable to mineral diesel, particularly at high engine loads. Average sizes of particles emitted in gasoline exhaust are found to be way smaller than particles emitted in diesel exhaust under similar operating conditions. The peak particle concentrations for mineral diesel never go below 40 nm size however for gasoline engine, it was as low as 20 nm for most engine operating conditions. Within a very limited operating range, gasoline engine performance was superior to its diesel counterparts in terms of particulate size and number distribution however it deteriorates very quickly as soon as the fuel-air mixture becomes closer to stoichiometric ratio, typically under high engine load and speed conditions.  相似文献   

10.
C.H. Cheng  C.S. Cheung  T.L. Chan  S.C. Lee  C.D. Yao  K.S. Tsang   《Fuel》2008,87(10-11):1870-1879
Biodiesel is an alternative fuel for internal combustion engines. It can reduce carbon monoxide (CO), hydrocarbon (HC) and particulate matter (PM) emissions, compared with diesel fuel, but there is also an increase in nitrogen oxides (NOx) emission. This study is aimed to compare the effect of applying a biodiesel with either 10% blended methanol or 10% fumigation methanol. The biodiesel used in this study was converted from waste cooking oil. Experiments were performed on a 4-cylinder naturally aspirated direct injection diesel engine operating at a constant speed of 1800 rev/min with five different engine loads. The results indicate a reduction of CO2, NOx, and particulate mass emissions and a reduction in mean particle diameter, in both cases, compared with diesel fuel. It is of interest to compare the two modes of fueling with methanol in combination with biodiesel. For the blended mode, there is a slightly higher brake thermal efficiency at low engine load while the fumigation mode gives slightly higher brake thermal efficiency at medium and high engine loads. In the fumigation mode, an extra fuel injection control system is required, and there is also an increase in CO, HC and NO2 (nitrogen dioxide) and particulate emissions in the engine exhaust, which are disadvantages compared with the blended mode.  相似文献   

11.
Fast-sizing spectrometers, such as the TSI Engine Exhaust Particle Sizer (EEPS), have been widely used to measure transient particle size distributions of vehicle exhaust. Recently, size distributions measured during different test cycles have begun to be used for calculating suspended particulate mass; however, several recent evaluations have shown some deficiencies in this approach and discrepancies relative to the gravimetric reference method. The EEPS converts electrical charge carried by particles into size distributions based on mobility classification and a specific calibration, and TSI recently released a matrix optimized for vehicle emissions as described by Wang et al. (Submitteda). This study evaluates the performance of the new matrix (soot matrix) relative to the original matrix (default matrix) and reference size distributions measured by a scanning mobility particle sizer (SMPS). Steady-state particle size distributions were generated from the following five sources to evaluate exhaust particulates with various morphologies estimated by mass-mobility scaling exponent: (1) A diesel generator operating on ultralow sulfur diesel, (2) a diesel generator operating on biodiesel, (3) a gasoline direct-injection vehicle operating at two speeds, (4) a conventional port-fuel injection gasoline vehicle, and (4) a light-duty diesel (LDD) vehicle equipped with a diesel particulate filter. Generally, the new soot matrix achieved much better agreement with the SMPS reference for particles smaller than 30 nm and larger than 100 nm, and also broadened the accumulation mode distribution that was previously too narrow using the default matrix. However, EEPS distributions still did not agree with SMPS reference measurements when challenged by a strong nucleation mode during high-load operation of the LDD vehicle. This work quantifies the range of accuracy that can be expected when measuring particle size distribution, number concentration, and integrated particle mass of vehicle emissions when using the new static calibration derived based on the properties of classical diesel soot.

Copyright 2015 American Association for Aerosol Research  相似文献   

12.
Particulates give great concern for mankind health. Especially the nano size particles are under discussion. Therefore, the particle size distribution from the combustion chamber to tail pipe emissions are of great interest. With the aim of scanning mobility particle sizer the number weighted particle size distributions were measured in the combustion chamber as well as in the exhaust gas up and downstream of aftertreatment systems. Using the identical particle measurement technique results can be compared without changing the particle size definition. The particles in the cylinder of a modern serious DI diesel engine were sampled with a time resolved fast gas sampling valve. The Soot particles formed in the cylinder during the early combustion phase are oxidized by about 99% in the late combustion/early expansion phase, whereas the soot particle sizes distribution in the cylinder at the end of the expansion phase are equal to that in the tail pipe. DI diesel engines with high pressure injection system emit less numbers of particle with in tendency greater sizes compared to IDI diesel engines. Oxidation catalysts do not influence particle size distribution but particulate traps reduce particle number by up to two orders of magnitude. Detail analysis shows that an increase of nano size particle number downstream of an aftertreatment device results from artifacts.  相似文献   

13.
An experimental investigation was performed to study the influence of dual-fuel combustion characteristics on the exhaust emissions and combustion performance in a diesel engine fueled with biogas-biodiesel dual-fuel. In this work, the combustion pressure and the rate of heat release were evaluated under various conditions in order to analyze the combustion and emission characteristics for single-fuel (diesel and biodiesel) and dual-fuel (biogas-diesel and biogas-biodiesel) combustion modes in a diesel engine. In addition, to compare the engine performances and exhaust emission characteristics with combustion mode, fuel consumption, exhaust gas temperature, efficiency, and exhaust emissions were also investigated under various test conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by two electronically controlled gas injectors, which were installed in the intake pipe.The results of this study showed that the combustion characteristics of single-fuel combustion for biodiesel and diesel indicated the similar patterns at various engine loads. In dual-fuel mode, the peak pressure and heat release for biogas-biodiesel were slightly lower compared to biogas-diesel at low load. At 60% load, biogas-biodiesel combustion exhibited the slightly higher peak pressure, rate of heat release (ROHR) and indicated mean effective pressure (IMEP) than those of diesel. Also, the ignition delay for biogas-biodiesel indicated shortened trends compared to ULSD dual-fueling due to the higher cetane number (CN) of biodiesel. Significantly lower NOx emissions were emitted under dual-fuel operation for both cases of pilot fuels compared to single-fuel mode at all engine load conditions. Also, biogas-biodiesel provided superior performance in reductions of soot emissions due to the absence of aromatics, the low sulfur, and oxygen contents for biodiesel.  相似文献   

14.
Myung Yoon Kim  Bong Woo Ryu 《Fuel》2008,87(12):2779-2786
The subject of this work is the investigation of the injection characteristics of neat dimethyl ether (DME) and the effect of DME fuel on the exhaust emission characteristics and engine performance of compression ignition engines. In order to analyze the injection characteristics of DME fuel as an alternative fuel for compression ignition engines, experiments were conducted to obtain the injection rate profile. The effective nozzle diameter and its velocity, and the discharge coefficient of the nozzle were analyzed by applying a nozzle flow model that accounted for the effect of cavitation. In addition, combustion characteristics of DME and diesel fuel in terms of combustion pressure, rate of heat release, indicated mean effective pressure (IMEP), and ignition delay at various injection timings were investigated on a constant energy input basis.When a constant pulse width was applied, the results of DME injection characterization showed that the actual injection duration of DME was longer than that of diesel fuel because the injection started faster and ended with more delay. The DME fueled engine showed slightly higher IMEP and NOx emission with drastically lower CO and HC emissions and the possible reasons for the higher IMEP of DME fuel was discussed.  相似文献   

15.
Energy demand, decreasing fossil fuel reserves, and health-related issues about pollutants have led researchers to search for renewable alternative fuels to either partially or fully replace fossil fuels. Among many alternative fuels, biodiesel became one of the most popular choices due to similar properties to that of conventional diesel. Biodiesel produces slightly lower brake thermal efficiency compared to that of conventional biodiesel, but has an advantage of reduced emissions of CO2, CO, HC, and smoke. However, biodiesel shows higher NOx emission which, when used in increased biodiesel market, may become a serious problem. Various strategies were attempted by different researcher to reduce NOx emissions. In this paper, various strategies, adapted for reducing NOx emissions of biodiesel fuel used in diesel engines for automobile applications, are reviewed and discussed. The strategies are grouped into three major groups, namely combustion treatments, exhaust after-treatments, and fuel treatments. Among various strategies discussed, fuel treatments, such as low temperature combustion, mixing fuel additives and reformulating fuel composition, reduce NOx emission without compromising other emission and performance characteristics and they seem to be promising for future biodiesel fuel.  相似文献   

16.

Diesel engine particle emissions during transient operations, including emissions during FTP transient cycles and during active regenerations of a NOx adsorber, were studied using a fast Engine Exhaust Particle Sizer (EEPS). For both fuels tested, a No. 2 certification diesel and a low sulfur diesel (BP-15), high particle concentrations and emission rates were mainly associated with heavy engine acceleration, high speed, and high torque during transient cycles. Averaged over the FTP transient cycle, the particle number concentration during tests with the certification fuel was 1.2e8/cm3, about four times the particle number concentration observed during tests using the BP-15 fuel. The effect of each engine parameter on particle emissions was studied. During tests using BP-15, the particle number emission rate was mainly controlled by the engine speed and torque, whereas for Certification fuel, the engine acceleration also had a strong effect on number emission rates. The effects of active regenerations of a diesel NOx adsorber on particle emissions were also characterized for two catalyst regeneration strategies: Delayed Extended Main (DEM) and Post 80 injection (Post80). Particle volume concentrations observed during DEM regenerations were much higher than those during Post80 regenerations, and the minimum air to fuel ratio achieved during the regenerations had little effect on particle emission for both strategies. This study provides valuable information for developing strategies that minimize the particle formation during active regenerations of NOx adsorbers.  相似文献   

17.
The need for diversification of energy sources and reducing various emissions including CO2 emission in diesel engine can be met with alternative diesel fuels such as gas to liquid (GTL) and GTL–biodiesel blends. But there should be a clear understanding of the combustion and engine-out emission characteristics for alternative fuels. In this respect, an experimental study was conducted on a 2.0 L 4 cylinders turbocharged diesel engine fuelled with those alternative diesel fuels to investigate the engine-out emission characteristics under various steady-state engine operating conditions. The results revealed that noticeable decreases in THC (22–56%) and CO (16–52%) emissions for GTL–biodiesel blends were observed, whereas NOx emissions for GTL–biodiesel blends increased by a maximum of 12% compared to diesel. With regard to particle size distributions (PSDs) for GTL–biodiesel blends, the particulate matter (PM) number concentration in accumulation mode decreased, as a result of the excess oxygen content in biodiesel. Contrary to the tendency in the accumulation mode, there was a slight increase in the PM number concentration in the nucleation mode under the operating conditions wherein the exhaust gas recirculation (EGR) strategy was applied. The total PM number concentration for G + BD40 decreased by a maximum of 46% compared to that for diesel. From these results of enhanced emission characteristics compared to diesel and GTL fuel, the potential for the use of GTL–biodiesel blends could be confirmed.  相似文献   

18.
The operation of four – stroke diesel engines in either propulsion or generator mode application has a strong influence on gaseous, smoke (soot) and particulates emissions. Tests were made with a supercharged after-cooled large-scale diesel engine (mean speed  500 rpm, power per cylinder  1 MW) burning mainly heavy fuel oil. Gaseous emissions (NOx, CO, HC) were measured according to the IMO technical code, smoke (soot) emissions were determined optically and particulate matter (PM) was measured using a gravimetric impactor for five size fractions. Impact on gaseous emissions, smoke (soot) and PM was found when analysing the effects of the engine operating mode, fuel nozzle, start of injection (SOI), and load (speed). Results show that the exhaust emission was also highly dependent on the engine turbocharger system, especially the by-pass control, but was not affected by waste gate control. The gaseous and soot emissions were less for the generator mode in the total load region, decreasing with the load. PM emissions were found to decrease with the load for the propulsion mode, while showing an increase with the load for the generator mode.  相似文献   

19.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

20.
In the effort to reduce pollutant emissions from diesel engines various solutions have been proposed, one of which is the use of natural gas as supplement to liquid diesel fuel, with these engines referred to as fumigated, dual fuel, compression ignition engines. One of the main purposes of using natural gas in dual fuel (liquid and gaseous one) combustion systems is to reduce particulate emissions and nitrogen oxides. Natural gas is a clean burning fuel; it possesses a relatively high auto-ignition temperature, which is a serious advantage over other gaseous fuels since then the compression ratio of most conventional direct injection (DI) diesel engines can be maintained high. In the present work, an experimental investigation has been conducted to examine the effects of the total air-fuel ratio on the efficiency and pollutant emissions of a high speed, compression ignition engine located at the authors’ laboratory, where liquid diesel fuel is partially substituted by natural gas in various proportions, with the natural gas fumigated into the intake air. The experimental results disclose the effect of these parameters on brake thermal efficiency, exhaust gas temperature, nitric oxide, carbon monoxide, unburned hydrocarbons and soot emissions, with the beneficial effect of the presence of natural gas being revealed. Given that the experimental measurements cover a wide range of liquid diesel supplementary ratios without any appearance of knocking phenomena, the belief is strengthened that the findings of the present work can be very valuable if opted to apply this technology on existing DI diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号