首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turbulent and Brownian coagulation rates as well as deposition coefficients of polydisperse nanoparticles were measured experimentally. The coagulation rates were obtained from the change in the total number concentration of polydisperse sodium chloride aerosols, with geometric mean diameters ranging from 30 to 120 nm, in a closed chamber at atmospheric pressure. The geometric standard deviations of the experiments were in the range of 1.55–1.65. The experimental coagulation rates took deposition rates into account, because coagulation and deposition occur simultaneously in a closed chamber. As a result of deposition, it was shown that the experimental deposition coefficients of polydisperse aerosols were agreed well with the theoretical data of Park et al. [(2001). Wall loss rate of polydispersed aerosols. Aerosol Science and Technology, 35, 710–717]. It was shown that the effect of the coagulation was much greater than that of the deposition in the high particle number concentration. In addition, the results represented that bigger turbulent coefficients, caused by higher fan rotation speeds, make the turbulent coagulation process become stronger. In the small particle size range, however, the coagulation rates tend to converge though turbulent coefficients are different. In conclusion, it was shown that experimental coagulation rates followed the values of Lee and Chen [(1984). Coagulation rate of polydisperse particles. Aerosol Science and Technology, 3, 327–334], which were calculated for polydispere aerosols in the gas-slip regime and free-molecule regime.  相似文献   

2.
A fast integrated mobility spectrometer (FIMS) has been developed for rapid aerosol size distribution measurements including those aerosols with low particle number concentrations. In this work, an inversion routine has been developed for the FIMS and it is demonstrated that the FIMS can accurately measure aerosol size distributions. The inversion routine includes corrections for the particle residence time in the FIMS and other factors related to the width of the response (or transfer) function and multiple charging of particles. Steady-state size distributions measured with the FIMS compared well with those measured by a scanning mobility particle sizer (SMPS). Experiments also show that the FIMS is able to capture the size distribution of rapidly changing aerosol populations. The total particle concentration integrated from distributions measured by the FIMS agrees well with simultaneous measurements by a condensation particle counter (CPC).  相似文献   

3.
A sensitive method for detecting particle deposition on semiconductor wafers has been developed. The method consisted of generating a monodisperse fluorescent aerosol, depositing the known-size monodisperse aerosol on a wafer in a laminar flow chamber, and analyzing the deposited particles using a fluorometric technique. For aerosol particles in the size range of 0.1–1.0 μm, the mobility classification-inertial impaction technique developed by Romay-Novas and Pui (1988) was used to generate the monodisperse test aerosols. Above a particle diameter of 1.0 μm, monodisperse uranine-tagged oleic acid aerosols were generated by a vibrating-orifice generator. The test wafer was a 3.8-cm diameter silicon wafer placed horizontally in a vertical laminar flow chamber which was maintained at a free stream velocity of 20 cm/s. A condensation nucleus counter and an optical particle counter were used to obtain the particle concentration profile in the test cross section and to monitor the stability of aerosol concentration during the experiment. The results show that the measured particle deposition velocities on the wafers agree well with the theory of Liu and Ahn (1987) in the particle size range between 0.15 and 8.0 μm. The deposition velocity shows a minimum around 0.25 μm in particle diameter and increases with both smaller and larger particle size owing to diffusional deposition and gravitational settling, respectively.  相似文献   

4.
A number of material synthesis processes such as flame, plasma and laser ablation have been developed for production of films and powders at low pressure and high temperature. At these conditions particle growth typically takes place by coagulation in the free molecule and transition regimes. As economic manufacturing of these materials favors operation at high particle concentrations, classic coagulation theory may not be sufficient to describe the ensuing aerosol dynamics, especially if fractal-like particles are formed. The coagulation rate of highly concentrated, polydisperse aerosols is investigated here from the free molecule to the continuum regime by solving the corresponding Langevin dynamics (LD) equations. The LD simulations are validated by monitoring the attainment of the self-preserving size distribution (SPSD) for dilute particle volume fractions, φs, below 0.1%. High particle concentrations in the free molecule regime lead to deviations of the aerosol dynamics from the kinetic theory of gases especially during instantaneous coalescence (completely inelastic particle–particle collisions) resulting in slower coagulation rates and slightly narrower SPSDs than in conventional dilute aerosols. In the transition regime, the coagulation rate of highly concentrated aerosols is progressively higher than that for dilute aerosols as growing particles enter the continuum regime where coagulation rates are 2–30 times higher than that of classic Smoluchowski theory. At high particle concentrations (φs>1%), a SPSD is approached (σg,n=1.42) that does not exhibit the characteristic minimum at the transition regime of dilute aerosols. A relationship is developed for the aerosol coagulation rate of highly concentrated aerosols from the free molecule to continuum regime.  相似文献   

5.

Exposure to airborne particles indoors depends on particle concentration, which is affected by air filtration, ventilation, and particle dynamics. The aim of this work was quantitative assessment of the effects of coagulation, surface deposition, and ventilation on the submicrometer particle concentration indoors. The assessment was obtained from measured particle loss rate and deposition velocity parameters. The experiments were conducted in an experimental chamber for three different types of aerosols: environmental tobacco smoke, petrol smoke, and ambient air aerosols. Particle number concentration and size distribution were measured in the size range between 0.017 and 0.898 w m by SMPS. The average values for the overall deposition loss rates varied from 4.3 2 10 m 5 s m 1 (0.16 h m 1 ) to 1.1 2 10 m 4 s m 1 (0.39 h m 1 ). The overall deposition velocities associated with surface deposition and coagulation ranged from 9.6 2 10 m 4 cm s m 1 to 2.4 2 10 m 3 cm s m 1 , and for surface deposition only from 2.8 2 10 m 4 cm s m 1 to 6.3 2 10 m 4 cm s m 1 . For indoor conditions with an air exchange rate above 1.3 h m 1 , (natural ventilation, no filters) only a reduction in particle number of about 20% is attributed to the surface deposition and coagulation.  相似文献   

6.
During the 1979 workshop of the working group on ultrafine aerosols, different experimental techniques for measuring the number concentration and size of ultrafine aerosol particles were compared. In the present paper we report on a comparison of different particle size measuring techniques for ultrafine aerosols. Well-defined monodisperse aerosols with electrical mobility particle diameters ranging from 13 to 100 nm were generated using an electrical aerosol classifier. Kelvin-equivalent size distributions of these aerosols were determined by means of a process-controlled expansion chamber, the size-analyzing nuclei counter (SANC). To this end the considered aerosol was humidified and the number concentration of the droplets growing in the expansion chamber was measured for stepwise increase in supersaturation. At a quite well defined critical supersaturation, a significant increase in the measured droplet concentration, and thus the onset of heterogeneous nucleation, was observed. By means of the Kelvin-Gibbs equation this critical supersaturation is related to the Kelvin-equivalent diameter of the aerosol particles. Measurements were made on NaCl and dioctyl phthalate (DOP) aerosols. For NaCl particles the Kelvin diameter was found to be larger by a factor of about 4 than the electrical mobility diameter, as determined by the electrostatic aerosol classifier. This is explained by the solubility of the NaCl particles. For DOP particles, however, the Kelvin diameter agrees quite well with the electrical mobility diameter. The Kelvin size distributions were found to be quite narrow, indicating a high monodispersity of the generated aerosol as well as a satisfactory size resolution of the SANC. Thus different experimental techniques, based on completely different principles, yielded similar measurement results.  相似文献   

7.
In this paper we report on theoretical and experimental work on aerosol formation in a free turbulent jet. A hot DEHS vapor issues through a circular nozzle into slowly moving cold air. Vapor concentration and temperatures are such that particles are formed via homogeneous nucleation close to the nozzle upon mixing with the surrounding air. The vapor is completely quenched in the nucleation regime so that further particle growth is controlled by coagulation. A simple growth dynamics model is presented and the theory is used to design a generation system that produces liquid aerosols at a very high number current [up to 1012 particles (s)]. The aerosol properties can be controlled by two easily adjustable parameters. The aerosol properties are related to these parameters by simple scaling laws. The results of measurements of the number current and the average particle size support these scaling laws.  相似文献   

8.
湿式氨法烟气脱硫中气溶胶的形成特性研究   总被引:2,自引:0,他引:2  
气溶胶的形成是湿式氨法烟气脱硫过程存在的主要问题,通过测试分析氨法脱硫前后细颗粒的浓度与粒径分布、颗粒形态及其组成的变化特性,探讨了氨法脱硫中气溶胶的形成机理,并考察了影响气溶胶颗粒形成的主要因素。结果表明:氨水挥发逸出的气态NH3与烟气中SO2发生气相反应是气溶胶形成的主要原因,气溶胶含(NH4)2SO4、(NH4)2SO3、NH4HSO3等组分,粒径集中在0.07~0.70μm范围内,氨法脱硫系统对其难以有效脱除;氨水脱硫液温度及其浓度、烟气中SO2浓度、液气比等对气溶胶形成具有重要影响,形成量随氨水脱硫液及烟气中SO2浓度升高而增多,在保持NH3:SO2化学计量比不变的情况下,随液气比增大,气溶胶颗粒形成量减少。最后,对气溶胶颗粒的控制措施提出了建议。  相似文献   

9.
In this article, the potential of a thermophoretic sampling device to derive quantitative particle size distributions and number concentrations of aerosols based on microscopic single particle analysis is explored. For that purpose a plate-to-plate thermophoretic precipitator to collect ultrafine atmospheric particles for TEM (transmission electron microscopy) analysis has been calibrated and characterized. The representativeness of the samples has been verified in a series of experiments. Results show that, for particles with diameters of 15 nm to 300 nm, the precipitator's collection efficiency is independent of size, shape, and composition of the particles. Hence, its samples accurately represent the original aerosol.

A numerical model of thermophoretic deposition within the device has been developed and tailored to the specifications of the precipitator. The model has been used to derive the particle number density and size distribution of several calibration aerosols using the TEM analysis of the samples taken with the thermophoretic precipitator as input parameters. The results agree very well with the on-line measurements of the calibration aerosols. This work demonstrates that our thermophoretic sampling device can be used to derive quantitative particle size distributions and number concentrations of ultrafine particles based on microscopic single particle analysis.  相似文献   

10.
A postplasma neutralizer for submicron particles size measurements by mobility analysis has been evaluated. Bipolar ion currents have been measured downstream a dielectric barrier discharge (DBD) to estimate the ion fluxes at the inlet of charging volume and the ni·τ product that define the theoretical maximal concentration that can be neutralized. Charge distributions were measured versus DBD voltage, aerosol diameter and concentration for monodisperse aerosols. It is confirmed that the charge distribution of particles depends on the ratio of initial positive and negative ion currents controlled by the DBD voltage leading to a tuneable mean charge of aerosol in this post-DBD bipolar charger. As expected from Gunn's law, the mean charge and the variance are proportional to particle diameter above 50 nm and independent of the aerosol concentration. The size distributions measured with 85Kr and post-DBD neutralizer present the same modal diameters and a maximal overestimation of the total concentration of 10%, for aerosol from 15 to 730 nm with concentrations up to 6 × 1012 m?3. This post-DBD bipolar charger can be used for submicron aerosol neutralization and thus for scanning mobility particle sizer size distribution measurements in air as well as in nitrogen to suppress ozone downstream DBD.

Copyright © 2017 American Association for Aerosol Research  相似文献   

11.
ABSTRACT

Particle emissions from consumer-fused deposition modeling 3D printers have been reported previously; however, the complex processes leading to observed aerosols have not been investigated. We measured particle concentrations and size distributions between 7 nm and 25 μm emitted from a 3D printer under different conditions in an emission test chamber. The experimental data was combined with a moment lognormal aerosol dynamic model to better understand particle formation and subsequent evolution mechanisms. The model was based on particles being formed from nucleation of unknown semivolatile compounds emitted from the heated filament during printing, which evolve due to condensation of emitted vapors and coagulation, all within a small volume near the printer extruder nozzle. The model captured observed steady state particle number size distribution parameters (total number, geometric mean diameter and geometric standard deviation) with errors nominally within 20%. Model solutions provided a range of vapor generation rates, saturation vapor pressures and vapor condensation factors consistent with measured steady state particle concentrations and size distributions. Vapor generation rate was a crucial factor that was linked to printer extruder temperature and largely accounted for differences between filament material and brands. For the unknown condensing vapor species, saturation vapor pressures were in the range of 10?3 to 10?1 Pa. The model suggests particles could be removed by design of collection surfaces near the extruder tip.

Copyright © 2018 American Association for Aerosol Research  相似文献   

12.
In this study experiments were carried out by generating sodium compound aerosols in the aerosol test facility (ATF) and exposing the chamber volume panoramically with gamma radiation source. By using a light scattering technique, the real time changes in number concentration of aerosols and their volume–size distributions were measured. From the data, the coagulation coefficient is derived with and without the presence of gamma radiation field. It is observed that the coagulation coefficient is nearly one order more in the presence of gamma field than without gamma field. From the volume–size distribution data, it is observed that when there is no gamma field, there is a gradual shifting of mode from lower size to upper size ranges during the period of 100 min whereas, when gamma field is present, the size distribution becomes bi-modal at about 5 min duration and becomes multimodal as time progresses.  相似文献   

13.

A Monte Carlo method was developed to simulate multicomponent aerosol dynamics, specifically with simultaneous coagulation and fast condensation where the sectional method suffers from numerical diffusion. This method captures both composition and size distributions of the aerosols. In other words, the composition distribution can be obtained as a function of particle size. In this method, particles are grouped into bins according to their size, and coagulation is simulated by statistical sampling. Condensation is incorporated into the Monte Carlo method in a deterministic way. If bins with fixed boundaries are used to simulate the condensation process numerical dispersion occurs, and thus a moving bins approach was developed to eliminate numerical dispersion. The method was validated against analytical solutions, showing excellent agreement. An example of the usefulness of this model in understanding aerosol evolution is presented. The effects of the number of particles and number of bins on the accuracy of the numerical results are also discussed. It was found that with 20 bins per decade and 105particles in the control volume results with less than 5%error can be obtained. The results are further improved to within 2%error by filtering the statistical noise with a cubic spline algorithm.  相似文献   

14.
In this paper, a new and robust splitting wavelet method has been developed to solve the general aerosol dynamics equation. The considered models are the nonlinear integro-partial differential equations on time, size and space, which describe different processes of atmospheric aerosols including condensation, nucleation, coagulation, deposition, sources as well as turbulent mixing. The proposed method reduces the complex general aerosol dynamic equation to two one-dimensional splitting equations in each time interval, and further the wavelet method and the upstream finite difference method are proposed for solving the particle size directional and the spatial directional splitting equations. By the method, the aerosol size spectrum is represented by a combination of Daubechies’ wavelets and substituted into the size-directional splitting equation at each time step. The class of Daubechies’ wavelets in the wavelet-Galerkin scheme as trial and weight functions has the advantages of both compact support and orthonormality which can efficiently simulate the sharp shape distribution of aerosols along the particle size direction. Numerical experiments are given to show the efficient performance of the method.  相似文献   

15.
The influence of the colloidal characteristics of aqueous TiO2 nanoparticle suspensions and of the operating conditions on the total particle concentration and the particle size distribution of aerosols generated by nebulization has been studied. A commercial nebulization unit coupled to a diffusion dryer was used to generate aerosols using two different sources of titanium dioxide nanoparticles. Stable, concentration-tunable aerosols could be obtained for both types of nanoparticle suspensions. The effect of operating conditions during nebulization (air flow rate, purity of water source, nanoparticle concentration, and pH of the precursor suspension) was studied. The results obtained indicate that the degree of agglomeration in the liquid phase previous to aerosol formation has a direct influence both on the total nanoparticle count and on the particle size distribution of the generated aerosols.

Copyright 2013 American Association for Aerosol Research  相似文献   

16.
A method for obtaining approximate cumulative particle size distributions with high flow rate elutriators has been developed. Several multiple channel elutriators of different capacities are used to sample the aerosol simultaneously and in parallel. From their measured efficiencies, a mixture of monodisperse aerosols is found analytically which yields these efficiencies for each elutriator. The cumulative size distribution is inferred from the composition of the monodisperse aerosol mixture.  相似文献   

17.
PAH size distributions were measured at Mumbai (formerly Bombay), India, to examine PAH partitioning to multimodal urban aerosols. Bimodal size distributions were obtained with a predominance of non-volatile PAH species in the fine mode and semi-volatile PAH species in the coarse mode. We develop size-resolved PAH gas/particle partition coefficients, based on adsorption and absorption theory, and analyse measurements in terms of estimated PAH size distributions in typical urban airsheds dominated by primary and secondary aerosol constituents. Adsorption explains PAH presence in the nuclei and accumulation modes where the aerosol surface area predominates (primary emissions), while absorption explains their predominance in the accumulation mode where absorbing organic matter is available (secondary aerosol constituents in a smoggy airshed). Volatilisation of semi-volatile PAH from nuclei mode aerosols, at enhanced rates (Kelvin effect), and their absorptive partitioning to accumulation mode aerosols, enhanced in a smoggy airshed, would explain previous measurements of semi-volatile PAH predominance in the accumulation mode in Los Angeles. The absence of a predominant PAH accumulation mode in Mumbai measurements is likely from the absence of significant photochemistry and aerosol organic matter. Equilibrium adsorption and absorption are unable to explain coarse particle PAH predominance which would occur by dry deposition scavenging of gaseous and nuclei-mode PAH by soil particles which undergo cyclic re-suspension and deposition in an urban airshed. Coarse particle morphology and adsorption affinity of PAH to mineral particles must be examined to better understand PAH predominance in coarse mode aerosols.  相似文献   

18.
Experimental measurements on the deposition of cigarette smoke particles (CSP) in the human airways have produced results that are inconsistent with typical deposition data based on particle size. Previous work relating to hygroscopic growth indicates that hygroscopicity alone can not account for this discrepancy. The present study investigates coagulation of CSP modeled as a polydisperse-charged aerosol as a possible explanation. The results of the model more accurately predict the experimental coagulation data for mainstream CSP than models that treat CSP as a monodisperse or polydisperse-uncharged aerosol. An aerosol with an initial charge distribution based on Boltzmann equilibrium yields slightly larger coagulation rates than the mainstream CSP polydisperse-charged model. The numerical results indicate that the size and charge distribution of sidestream CSP, with a concentration of 106 particles cm-3, remain stable. In 2 s, the size distribution of mainstream CSP, with a concentration of 109 particles cm-3, shifts to a larger size while becoming flatter and wider. The diameter of average mass increases from 0.29 to 0.5 μm. Numerical results confirm experimental reports for mainstream CSP, which indicate that the total number of charged particles increases with time and, in the early stages of coagulation, the amount of charge per particle cannot be estimated based on the particle size. This study shows that polydisperse-charged CSP, allowed to coagulate for 2 s in the mouth, will not produce size distributions that yield the observed deposition of CSP. However, additional coagulation will take place as the CSP travels through the respiratory tract, which will be investigated in future work.  相似文献   

19.
A portable technique is presented for rapid estimation of the charge distribution of submicron aerosols under atmospheric conditions, using two Differential Mobility Analyzer (DMA) systems in parallel. Simultaneous measurement of the aerosol mobility and size distributions are made by using one DMA with a neutralizer and the other without. An estimate of the aerosol charge is obtained by a fitting procedure, in which the size distribution and an expression for the charge distribution are used to calculate the mobility distribution of the sample. The parameters in the theoretical charge distribution are varied iteratively until the calculated and measured mobility distributions match. Validation was undertaken with separate measurements of ion mobility and concentration used in the charging expression. Results are presented for ambient indoor air, unipolar ion production by an ionizer and downwind of a high-voltage overhead AC powerline.  相似文献   

20.
Direct numerical simulations of coagulating aerosols in two-dimensional, incompressible, iso-thermal mixing layers are performed. The evolution of the particle field is obtained by utilizing a moment method to approximate the aerosol general dynamic equation. We use a moment method which assumes a lognormal function for the particle size distribution and requires the knowledge of only the first three moments. This approach is advantageous in that the number of equations which are solved is greatly reduced. A Damköhler number is defined to represent the ratio of convection to coagulation time scales. Simulations are performed for three flows: Damköhler numbers of 0.2, 1, and 2. The spatio-temporal evolution of the first three moments along with the mean diameter and standard deviation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号