首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodisperse, fine aerosols are needed in many applications: filter testing, experiments for testing models, and aerosol instrument calibration, among others. Usually, monodisperse fine aerosols are generated in very low concentrations, or mass flow rates, in the laboratory scale. In this work, we needed to generate aerosols with higher mass flow rate than typically available by the laboratory-scale methods, such as atomizers, nebulizers, ultrasonic generators, vibrating orifice generators, and condensation generators. Therefore, we constructed a fluidized bed aerosol generator to achieve particle mass flow rates in the range of 15-100 g/h. Monodisperse, spherical SiO2 particles of two sizes with geometrical diameters of 1.0 and 2.6 µm were used in the aerosol generator. The aerosol generator was used at both atmospheric pressure, and at high pressures up to 5 bar (abs).The particle size, mass concentration and the net average particle charge were measured after mixing the aerosol with nitrogen. The particle size distributions with both particle sizes were monodisperse, and no particle agglomerates were entrained from the fluidized bed. The behavior of the fluidized bed generator was found to be markedly different with the two particle sizes in regard to particle concentration, presumably due to different particle charging inside the generator. After determining the net average charge of the particles, an ion source Kr-85 was used to reduce the charge of the particles. This was found to be effective in neutralizing the particles.  相似文献   

2.

A fluidized bed aerosol generator has been designed and built for the purpose of generating a constant output of dry, submicrometer particles with a large number density. The output of the fluidized bed for generating aerosol particles from dry soot powder has been characterized using a differential mobility analyzer and a condensation particle counter. The particle size distribution is bimodal, with a mode in the submicrometer diameter size range and a mode in the supermicrometer diameter size range. The larger diameter mode is fully separated from the smaller mode and can thus be easily removed from the aerosol flow using impaction techniques. The distribution in the submicrometer size range is nearly log-normal, with a count median diameter falling between 0.1 and 0.3 micrometers. A number density of greater than 105 particles cm-3 of soot particles in the submicrometer range can be produced, constant to within 25% (1 standard deviation) over a 4 h time period. The number density of particles produced in the submicrometer range was found to vary with the ratio of soot to bronze beads in the bed mixture, whether or not a feed system was used, and nitrogen flow rate through the fluidized bed and feed system.  相似文献   

3.
《Journal of aerosol science》2003,34(11):1493-1504
Electret filters are composed of permanently charged electret fibers and are widely used in applications requiring high collection efficiency and low-pressure drop. We tested electret filter media used in manufacturing cabin air filters by applying two different charging states to the test particles. These charging states were achieved by spray electrification through the atomization process and by bipolar ionization with an aerosol neutralizer, respectively. Polydisperse solid NaCl particles with 0.1%, and 1% solutions or liquid dicotyl sebacate (DOS) particles were generated from an atomizer, and they were loaded on the filter media. The amount of charge, the mean particle size, and the particle material significantly affected the collection performance of the electret filter media for submicron particles. The collection efficiency of the electret filter media degraded as more particles were loaded, and showed minimum efficiency at steady state. The electret filter media captured the highly charged particles more efficiently during the transient state. At steady state, the filter media loaded with smaller NaCl particles showed lower collection efficiency. The filter media loaded with liquid DOS particles showed collection efficiency much lower than those loaded with solid NaCl particles.  相似文献   

4.
Non-uniformly charged particles cause a major problem in electrical methods for producing standard aerosols, imposing strict limitations on the usability of the obtained standard aerosols. This article gives a quick overview of this problem, examining the ways how differently charged particles affect the generation of standard aerosols, and presenting a new method for producing standard aerosols and avoiding the effects of multiply charged particles, with the key idea that the probability for small particles to have more than one charge is very low. A two-stage aerosol generator is used. Small silver particles (d< 40 nm) generated by homogeneous nucleation of silver vapors obtain in bipolar charger not more than one elementary charge. These condensation nuclei are enlarged by a condensational growth device. Big particles are now also not more than singly charged, and narrow size distribution can be obtained by electrical separation. Properties of standard aerosols produced experimentally by both the conventional and the new method, are compared and the validity of the new idea behind the new method is confirmed.  相似文献   

5.
Particle characteristics of a stable fluidized bed aerosol generator   总被引:1,自引:0,他引:1  
An aerosol generator consisting of a vibrating system for feeding dust into a fluidized bed was developed and tested to determine its dust output characteristics. The dust feed unit can produce 0–40 g min−1 of coal dust and shows constant output up to 3 h operation durations. These correspond to mass concentrations of 0–101 g m−3 of coal particles for an air flowrate of 395 l min−1 through the aerosol generator. The aerosolized coal particles show constant particle size distribution with time for up to h of testing under varied operation parameters. The normalized particle size distribution remains almost identical for a given feed material for a range of dust loadings. The time required to reach steady state aerosol generation is negligible for the sizes of coal particles used in this investigation.  相似文献   

6.
ABSTRACT

Diffusion losses and charging efficiency were measured for three types of charge neutralizers commonly used in aerosol research: two with 85Kr and one with 210Po as radiation sources. The diffusion losses were characterized at flows of 0.5 -6 1 min?1 typically used in atmospheric aerosol physics measurements. All of the neutralizers tested exhibited high transmission efficiencies, with losses up to 25% at the smallest tested size of 3 nm, varying with size and flow in general agreement with diffusion loss theory. Charging efficiency was measured for a singly charged, monodisperse aerosol at the same flows and at concentrations of 103-104 particles cm?3. Neither of the 85Kr chargers brought the charge distribution close to equilibrium at 2 1 min?1, except at concentrations ≤ 103 cm?3. The 210Po charger produced the theoretically expected fraction of singly charged particles within the uncertainty of the experiment.  相似文献   

7.
The objective of this study was to design and experimentally examine a sampling method for high-temperature aerosols from biomass combustion, in which nucleation and condensation from fly ash forming vapors is controlled. The sampling method includes a high-temperature probe in which the hot gas is diluted and then cooled. Laboratory results from sampling a model aerosol with known concentrations of SiO2 particles and KCl vapor showed that when using a high dilution ratio, the KCl vapor was effectively separated from the aerosol by deposition onto the probe walls. When a lower dilution ratio was used, the KCl vapor generated a distinct nucleation mode when cooled in the probe. The sampling method was also used for sampling flue gas from a circulating fluidized bed boiler fired with forest residues. The results suggest that the major fractions of Ca, K, S, and Zn were present as particles at 780°C, whereas most of the Cl and Pb were present as gases. The field results are consistent with results previously reported and indicate that the method can be used for efficient and precise characterization of high-temperature combustion aerosols containing inorganic vapors.  相似文献   

8.
The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases, the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. In the other two cases, a corona charger and an impact charger were utilized as supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator, a solution of methylene blue was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 × 10− 6 m to 1.4 × 10− 5 m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 × 10− 6 m and size range between 1.5 × 10− 7 m and 8.0 × 10− 6 m was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles, the median charges of the particles varied between − 3.0 × 10− 16 C and − 5.0 × 10− 18 °C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles.  相似文献   

9.
Bipolar diffusion charging is used routinely in aerosol electrical mobility size distribution measurements. In this study, aerosol charge fractions produced by six bipolar chargers (neutralizers) were measured using a tandem differential mobility analyzer system. Factors that were studied include the type of ion source (210Po, 85Kr, 241Am, and soft X-ray), source activity, charger design, and aerosol flowrate. It was found that all six types of neutralizers achieve stationary state charge distributions when the source activity is sufficiently high. For 210Po neutralizers with an initial radioactivity of 18.5 MBq (0.5 mCi), stationary state charge distributions are achieved when the source is less than 3.25 years old (residual activity no less than 0.0527 MBq). Stationary state was achieved for 85Kr neutralizers having residual radioactivity greater than 70 MBq. Source activities of 241Am and soft X-ray neutralizers are discussed. Aerosol charge fractions for six neutralizers remain reasonably invariant over a wide range of flowrates. The positive charge fractions achieved by the soft X-ray neutralizer are higher than those by the other five neutralizers using radioactive sources while negative charge fractions for all neutralizers studied are all in a similar range. This study also raises questions about bipolar charging fractions used for data inversion in some scanning mobility particle spectrometer (SMPS) systems, and underscores the need to better understand bipolar charging to achieve more accurate measurements of particle size distributions.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
A long-lasting generator of continuous silica nanoparticle aerosols based in a fluidized bed of glass beads coated with nanosized silica has been developed. The attrition resulting from the bubbling fluidized bed regime progressively detaches the silica coating from the glass beads, giving rise to a steady production of silica nanosized aerosols with median diameters from 100 to 250 nm depending on the initial size of the coating nanoparticles. Continuous aerosol production could be maintained for more than 12 h, and the nanoparticle concentration can be easily tuned in the range of 2000 to 14,000 #/cm3 by adjusting the fluidization and/or dilution flow rates.

Copyright 2013 American Association for Aerosol Research  相似文献   

11.

An ion generator was developed to neutralize concentrated streams of large, highly charged particles in a low-velocity wind tunnel. The aerosol stream tested consisted of 30 mu m aluminum oxide particles (aerodynamic diameter 52 mu m) at a flow rate of 9.6 m3/h (160 L min) and a mass concentration of 43 g/m3. The average number of excess charges per particle was 240,000 (positive), which corresponds to a neutralizing current requirement of 0.11 mu A. Neutralization to < +/- 10,000 charges per particle was necessary to prevent electrostatic sampling artifacts. Neutralization with radioactive sources would have required an impractically large source. The ion generator, constructed from 21 and 32 mm PVC pipe, has 4 peripheral radial electrodes of 0.5 mm tungsten wire and a 2.0 mm diameter central electrode. The aerosol flowed through the ion generator along its axis. The ion generator was powered by an adjustable (0-8.5 kV) power supply. Performance of the ion generator was monitored with an isokinetic Faraday-cup sampler connected to a Keithley Model 6512 electrometer capable of 0.1 fA resolution. The sampler used a stainless steel 47 mm filter holder as the Faraday cup. The cup was insulated with Teflon inside a 90 mm diameter stainless steel enclosure with a 21 mm diameter inlet. This setup gave near real-time measure ment of the charge state of the aerosol in the wind tunnel. By adjusting the ion generator power supply, particle charge could be reduced to < 2% of its original charge. Ion generator output was sufficiently stable to maintain the particle charge within +/- 2% of the original charge over a 1 h period. These reduced charge levels are comparable to charge levels found on workplace aerosols.  相似文献   

12.
A spouted bed of 1.7 mm cement clinker particles was previously found to be an efficient collector of liquid micronsize aerosols introduced into the bed with the spouting gas(1) With solid aerosols, however, collection efficiencies obtained were poor since these failed to adhere permanently to the target particles and were re-entrained. The present paper describes experimental work to overcome the re-entrainment problem by making use of electrostatic forces. Solid latex aerosol particles (0.79 μm dia.) were electrified by a negative corona discharge and collected in a 15 cm diameter spouted bed of ABS plastic particles (2.5 mm cubes). The variables studied included corona voltage (0 to 9500 V), bed depth (0.3 to 0.5 m) and superficial gas velocity (0.23 to 0.85 m/s). Spouted bed efficiencies with neutral aerosols ranged from 43 to 65% as against 72-98% with charged aerosols The experimental results are interpreted using the two-region model of a spouted bed, and invoking an enhancement factor for aerosol mass transfer due to electrical effects. The values of this factor ranged between 160 to 2300 under the conditions studied.  相似文献   

13.
A simple and novel bipolar charging device using carbon fiber ionizers was developed to neutralize submicron aerosol particles without the generation of ozone. The ion currents of the positive and negative ions generated by carbon fiber ionizers were so chosen as to optimize particle neutralization. The particle penetration, charging probability and charge distribution resulting from the charger were investigated and compared to those from a Kr-85 radioactive neutralizer for the particles in the size range of 20–120 nm. Size distributions for various laboratory-generated aerosols (sodium chloride, ammonium nitrate, ammonium sulfate and glutaric acid) neutralized by the charger were also investigated and compared to those obtained without neutralization. Particle penetration in the charger was over 90% for particles larger than 20 nm. Charging probability and charge distribution for the charger were in good agreement with those from Kr-85 neutralizer and with theoretical estimations. Size distributions observed for the charger and Kr-85 neutralizer were also in good agreement for particles of different concentrations and various chemical compositions. The newly developed bipolar carbon fiber charger can neutralize submicron particles, at least as effectively as currently available radioactive neutralizers and with negligible ozone generation which is its major advantage.  相似文献   

14.
The mechanisms that control the polar ion concentrations downstream of an ionized region are examined and it is shown that the ratio of positive to negative ion concentrations is not constant. The imbalance in the ionic concentrations caused by unequal diffusion of ions to the walls and to aerosol particles is magnified in the ion ratio as ionic recombination rapidly depletes ions of both polarities equally. Consequently, the aerosol charge distribution is not in equilibrium but is evolving in response to the changing ion environment. The conclusions drawn are supported by numerical modeling and by measurements of ionic concentrations and ratios of negatively to positively charged particles downstream of the ionized region. Several existing neutralizers are evaluated and a prototype ionizer which produces an aerosol with a nearly symmetric equilibrium charge distribution is discussed.  相似文献   

15.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

16.
A laboratory scale test system has been designed and constructed to study the electrical agglomeration of charged aerosol particles as a method to increase the fine particle collection efficiency of electrostatic precipitators. The system consists of test aerosol generator, aerosol charger, agglomerator chambers, and aerosol measurement equipment. Air atomizing nozzles and the TSI six-jet atomizer have been used as the test particle generators. The test particles have been charged by a corona discharge. Two types of agglomerator chambers have been investigated. In one agglomerator the gas flows between two parallel plates, across which the alternating high voltage is applied. The other agglomerator is a quadrupole structure with cylindrical electrodes positioned between the grounded plates. Particle concentration and size distribution measurements have been carried out downstream of the agglomerator with agglomerator voltage on and off. Particle concentrations and size distributions have been measured with differential mobility analyzer (DMA) and a Berner low pressure impactor. These measurements show that agglomeration causes about a 4%-8% decrease in the fine particle concentration when the total mass concentration is between 1 and 2 g/m3. There was no difference between the results measured with the parallel plate and the quadrupole agglomerator.  相似文献   

17.
Current atmospheric observations tend to support the view that continental tropospheric aerosols, particularly urban aerosols, show multimodal mass distributions. One of the obvious mechanisms causing the multimodality is the mixing of different primary sources. Other modes involve dissimilar aerosol formation processes in the atmosphere. Fine aerosol particles are generated from secondary processes such as nucleation, condensation and chemical reaction, whereas coarse particles usually consist of dust, fly ash and mechanically generated aerosols. With the use of a newly developed computer code GROWTH in our laboratory, we report here the simulated results of Brownian coagulation dynamics involving multimodal mass density functions for long periods of time. In our model calculations we assume that the aerosol particles are well mixed in an atmospheric volume so that spatial variation in the distribution is negligible. Our accurate numerical simulation of the Brownian coagulation dynamics indicates that once formed, an atmospheric multimodal aerosol distribution in the range 0.1 to 100 μm will maintain its identity for a very long period of time (at least hours) unless “atmospheric perturbations” such as meteorological instabilities, rain-washout and gravitational settling occur. It is our belief that understanding the complex domain of atmospheric aerosols requires systematic investigation of each process. This paper is a continuation of such an investigation.  相似文献   

18.

A method to determine arbitrary moments of aerosol size distributions from differential mobility analyzer measurements has been proposed. The proposed method is based on a modification of the algorithm developed by Knutson and Whitby to calculate the moments of electrical mobility distributions. For this modification, the electrical mobility and the charge distribution have been approximately expressed by power functions of the particle diameter. To evaluate the validity of the approximation, we have carried out numerical simulations for typical size distributions. We have found that for typical narrowly distributed aerosols such as polystyrene latex particles and particles that arise in the tandem differential mobility analyzer configuration, the distribution parameters can be accurately determined by this method. For a log-normally distributed aerosol, the accuracy of the distribution parameters determined by this method has been evaluated as a function of the geometric standard deviation. We have also compared the accuracy of the proposed method with other existing methods in the case of the asymmetric Gaussian distribution.  相似文献   

19.
先行研制的振筛进料流化床气溶胶发生器的稳定性能不够理想,需要对其进行改进. 根据气溶胶在滤膜上沉积量与压力降的关系,通过测量采样滤膜两端压力降,对发生器发生浓度的稳定性进行了表征. 对流化床气溶胶发生器进料稳定性的影响因素进行了讨论,研究了进气流量和进料斗中硅胶加入量对稳定性的影响. 测试结果表明,进料斗中加入1~3层硅胶、进气流量800~1000 L/h时,发生器发生浓度的稳定性最好.  相似文献   

20.

Certain measurement techniques (such as the asbestos method using phase contrast microscopy) require uniform deposits of the sample on a filter. The asbestos fiber analytical methods require such uniform deposition because the analysis only observes small, randomly chosen locations on the filter. In this study, a vibrating orifice monodisperse aerosol generator was used to generate methylene blue particles. The aerosols were dried by filtered compressed air and then neutralized by inducing a charge on the droplet stream that emerged from the vibrating orifice. An Aerodynamic Particle Sizer was used to measure the number concentration and size distribution of the generated aerosol particles. Meanwhile, the filter deposits were examined via image processing, combined with statistical methods for defining uniformity. In order to better define uniformity and make the indicator more universal, the uniformity was defined as the exponential of the negative CV (coefficient of variation) value which was a transformation for easily understanding the uniformity of the filter deposits. The experimental results demonstrated that, when aerosol counting was performed, the equal area approach was superior to the equivalent distance approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号