首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
The Sunset Laboratory Carbon Aerosol Analysis Lab Instrument is widely used for thermal-optical analysis (TOA) of ambient particulate matter samples to measure total carbon (TC), organic carbon (OC), and elemental carbon (EC), and often thermal sub-fractions of OC and EC. TOA operating protocols include a series of plateau temperatures at which the thermal sub-fractions evolve. The temperatures have conventionally been measured by a sensor located in the sample oven but away from the filter sample. However, the TOA protocol used by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and recently adopted by the U.S. Environmental Protection Agency (EPA) Speciation Trends Network (STN) and Chemical Speciation Network (CSN) specify temperatures to be achieved at the filter. Our goal was to develop a simple calibration method to obtain the target filter temperatures in a Sunset Instrument. This method showed good agreement with the IMPROVE/STN/CSN method and has the advantages of not damaging oven components and of providing a direct comparison of sample oven sensor and filter temperatures at the TOA protocol-specified temperatures. Calibrations performed on four Sunset Instruments yielded different sensor/filter temperature relationships. Ambient PM 2.5 samples analyzed using IMPROVE_A temperatures at the oven sensor compared to IMPROVE_A temperatures at the filter yielded statistically insignificant differences for TC, OC, and EC but statistically significant differences for the carbon sub-fraction concentrations. Temperature calibrations should be performed on each Sunset Instrument to ensure comparability in the carbon sub-fractions being reported, and a simple method has been provided for performing these calibrations.  相似文献   

2.

Measurement methods for fine carbonaceous aerosol were compared under field sampling conditions in Flushing, New York during the period of January and early February 2004. In-situ 5- to 60-minute average PM 2.5 organic carbon (OC), elemental carbon (EC), and black carbon (BC) concentrations were obtained by the following methods: Sunset Laboratory field OC/EC analyzer, Rupprecht and Patashnick (R&P) series 5400 ambient carbon particulate monitor, Aerodyne aerosol mass spectrometer (AMS) for total organic matter (OM), and a two-wavelength AE-20 Aethalometer. Twenty-four hour averaged PM 2.5 filter measurements for OC and EC were also made with a Speciation Trends Network (STN) sampler. The diurnal variations in OC/EC/BC concentrations peaked during the morning and afternoon rush hours indicating the dominant influence of vehicle emissions. BC/EC slopes are found to range between 0.86 and 1.23 with reasonably high correlations (r > 0.75). Low mixing heights and absence of significant transported carbonaceous aerosol are indicated by the measurements. Strong correlations are observed between BC and thermal EC as measured by the Sunset instrument and between Sunset BC and Aethalometer BC. Reasonable correlations are observed among collocated OC/EC measurements by the various instruments.  相似文献   

3.
Measurements of diesel particulate emissions from maritime sources are rare, although this form of transportation causes significant air pollution. However, unlike the land environment, the nautical environment is free of interference from other combustion sources. Continuous measurements of diesel particulate matter (DPM) were recently conducted in conventional diesel-electric submarines. The average DPM concentration in the engine room was 150 μg m?3, with particle size distributions in the range of 0.5–2 μm. Chemical speciation of elemental carbon (EC), organic carbon (OC) and total carbon (TC) were determined. Both the National Institute of Occupational Safety and Health (NIOSH) Method 5040 and the Interagency Monitoring of Protected Visual Environment (IMPROVE) method showed EC as being composed of 45% TC. Soluble inorganic components of DPM were characterised. After correction for salt contribution, TC was found to be of 80% DPM. EC, TC and DPM were found to conform to the characteristics defined for exposure and risk assessments by government authorities.  相似文献   

4.
Aerosol absorption coefficients were obtained using two versions of the Magee Scientific Aethalometer and a Particle Soot Absorption Photometer (PSAP) in Riverside, California during July and August of 2005. These measurements were subsequently compared to each other and to hourly elemental carbon (EC) mass concentrations as determined by a Sunset Labs semi-continuous OCEC analyzer. Measurements from all four instruments were shown to be highly correlated (R 2 = 0.83 to 0.92). Differences between absorption values measured by the PSAP and the Aethalometer were found to be dominated by differences in the filter media used by the respective instruments. Comparison of optical and thermal measurements revealed that the specific attenuation cross section (σ ATN ) of light absorbing carbon (LAC) varied as a function of the time of the day, most notably during weekdays. Minimum σ ATN values were observed during morning rush hour when EC concentrations were at their greatest and maxima were seen in the late afternoon. These variations correlated with changes in the OC/EC ratio and the Angstrom exponent for absorption, which is consistent with changes in the mixing state of elemental carbon associated with secondary aerosol condensation on primary EC particles.  相似文献   

5.
A Particle-Into-Liquid Sampler (PILS) was modified and coupled with a Total Organic Carbon (TOC) Analyzer (Sievers 800T, GE Water Systems, Boulder, CO), in an attempt to measure particulate organic carbon (OC) online. The PILS droplet collection system was changed from an inertial impactor to a miniature cyclone to increase the efficiency of transferring insoluble carbonaceous aerosol to the liquid sample stream. The performance of the modified PILS was investigated with a variety of calibration aerosols through comparison with the Sunset Labs ECOC technique (NIOSH method 5040). Linear regression slopes of water-soluble organic compounds compared well with Sunset Labs measurement, agreeing to within 5%. However, a size dependence was observed when comparing insoluble carbonaceous aerosol (polystyrene latex spheres, PSL). The new method did not effectively measure insoluble particles with aerodynamic diameters greater than ~ 110 nm due to inefficient analysis by the TOC. The OC measurement method was also compared with online Sunset Labs organic carbon (OC) measurements in two urban locations: Atlanta, GA, and Riverside, CA. Linear regression slopes between the PILS technique and Sunset Labs were near unity (101% to 93% ± 2 and 5%, respectively), and not statistically different from unity considering the measurement uncertainty of each method. However there was a significant (0.6 to 1.7 μ gC m ? 3 ) non-zero intercept, with the Sunset Labs instrument measuring higher concentrations, possible due to the inability of the PILS to measure large, insoluble particles or positive artifacts with the non-blank corrected Sunset Labs filter-based collection method.  相似文献   

6.

The chemical, physical, and morphological complexity of atmospheric aerosol elemental carbon (EC) presents major problems in assuring measurement accuracy. Since EC and black carbon are often considered equivalent, methods based on thermal-optical analysis (TOA) are widely used for EC in ambient air samples because no prior knowledge of the aerosol's absorption coefficient is required. Nevertheless, different TOA thermal desorption protocols result in wide EC-to-total-carbon (TC) variation. We created three response surfaces with the following response variables: EC/TC, maximum laser attenuation in the He phase ( L max ), and laser attenuation at the end of the He phase ( L He4 ). A two-level central-composite factorial design comprised of four factors considered the temperatures and durations of all desorption steps in TOA's inert (He) phase and the initial step in TOA's oxidizing (O 2 -He) phase. L max was used to assess the positive bias caused by nonvolatile unpyrolized organic carbon (OC char) being measured as native EC. A negative bias that the attenuated laser response does not detect is caused by the loss of native EC in the He phase. L He4 was used as a surrogate indicator for the loss of native EC in the He phase. The intersection between the L max and L He4 surfaces revealed TOA conditions where both the production of OC char in the He phase was maximized and the loss of native EC in the He phase was minimized, therefore leading to an optimized thermal desorption protocol. Based on the sample types used in this study, the following are generalized optimal conditions when TOA is operated in the fixed-step-durations, laser-transmission mode (i.e., TOT): step 1 in He, 190°C for 60 s; step 2 in He, 365°C for 60 s; step 3 in He, 610°C for 60 s; step 4 in He, 835°C for 72 s. For steps 1-4 in O 2 -He, the conditions are 550°C for 180 s, 700°C for 60 s, 850°C for 60 s, and 900°C for 90 s to 120 s, respectively.  相似文献   

7.

The Aerodyne Aerosol Mass Spectrometer (AMS) provides size-resolved chemical composition of non-refractory (vaporized at 600°C under vacuum) submicron aerosols with a time resolution of the order of minutes. Ambient measurements were performed in Tokyo between February 2003 and February 2004. We present intercomparisons of the AMS with a Particle-Into-Liquid Sampler combined with an Ion Chromatography analyzer (PILS-IC) and a Sunset Laboratory semi-continuous thermal-optical carbon analyzer. The temperature of the AMS inlet manifold was maintained at > 10 ? C above the ambient dew point to dry particles in the sample air (relative humidity (RH) in the inlet < 53%). Assuming a particle collection efficiency of 0.5 for the AMS, the mass concentrations of inorganic species (nitrate, sulfate, chloride, and ammonium) measured by the AMS agree with those measured by the PILS-IC to within 26%. The mass concentrations of organic compounds measured by the AMS correlate well with organic carbon (OC) mass measured by the Sunset Laboratory carbon analyzer (r 2 = 0.67–0.83). Assuming the same collection efficiency of 0.5 for the AMS organics, the linear regression slope is found to be 1.8 in summer and 1.6 in fall. These values are consistent with expected ratios of organic matter (OM) to OC in urban air.  相似文献   

8.

Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided.

  相似文献   

9.
Particulate carbon is routinely measured in the IMPROVE (interagency monitoring of protected visual environments) program by analysis of samples collected on quartz filters. The analysis is performed at Desert Research Institute using the thermal optical reflectance method. Measurements of Si, Al, Ca, Ti, and Fe by X-ray fluorescence at Crocker Nuclear Laboratory are used by IMPROVE to calculate a SOIL parameter by weighting these elements to account for the oxygen and minor elements that are not measured. It is desirable to have alternative methods to measure both carbon and oxygen for data validation purposes.We have tested a method to measure carbon and oxygen concentrations from air samples deposited on PTFE membrane filters using the backscattered proton spectrum. The measurements were performed with a 4.5 MeV proton beam from the cyclotron of the Crocker Nuclear Laboratory during routine IMPROVE measurements of hydrogen by proton elastic scattering analysis. A surface barrier detector at 155° below the plane of the beam was employed in a Cornell geometry setup to measure the proton spectrum. We will discuss a consistent method to estimate the carbon from the PTFE (CF2)n membrane substrate that must be subtracted from the measured carbon (filter plus deposit). This method is independent of the number and arrangement of the fibers and the unknown stretching of the substrate. The measured carbon at multiple IMPROVE sites using this new method is generally slightly higher than carbon measured using thermal optical reflectance. The sum of all elements, including the oxygen and carbon determined by proton backscattering, compares somewhat better to gravimetric mass than the same sum using carbon by TOR instead of backscattering.  相似文献   

10.
A selective thermal oxidation method was developed for the speciation of carbonaceous aerosols collected on filters into organic carbon (OC) and elemental carbon (EC). The technique is based on studying the thermal oxidation of microcrystalline graphite by MnO2as well as various organic compounds. The procedure uses a modified Dohrmann DC-52 carbon analyzer with a flame ionization detector to detect the CO2resulting from the oxidation as methane after catalytic conversion. The results led to the selection of 525 °C as the optimal temperature for the oxidation of OC while leaving EC intact. After the organic oxidation, the sample is heated at 850° C, at which EC is oxidized rapidly and completely by MnO2. Carbonates that may be present in either the particles or the filter medium are removed by acidification and heating to ~ 120°C prior to performing the organic and EC measurements. Analysis of split ambient particulate samples in which the OC levels had been reduced by solvent extraction produced EC results statistically the same as the original untreated samples. These results suggest that the speciation is not sensitive to the level of organics in the sample. During the Carbonaceous Species Methods Comparison Study (CSMCS) in which the participants analyzed 20 blind samples, with four being triplicates, this technique yielded results in good agreement with the average results of the participants, with coefficients of variation (CV) derived from the triplicate analysis being 2.1%, 2.6%, and 8.1%, respectively, for total, organic, and elemental carbon.  相似文献   

11.

An objective of the Pittsburgh Air Quality Study was to determine the major sources of PM2.5 in the Pittsburgh region. Daily 24-hour averaged filter-based data were collected for 13 months, starting in July 2001, including sulfate and nitrate data from IC analysis, trace element data from ICP-MS analysis, and organic and elemental carbon from the thermal optical transmittance (TOT) method and the NIOSH thermal evolution protocol. These data were used in two source-receptor models, Unmix and PMF. Unmix, which is limited to a maximum number of seven factors, resolved six source factors, including crustal material, a regional transport factor, secondary nitrate, an iron, zinc and manganese factor, specialty steel production and processing, and cadmium. PMF, which has no limit to the number of factors, apportioned the PM2.5 mass into ten factors, including crustal material, secondary sulfate, primary OC and EC, secondary nitrate, an iron, zinc and manganese factor, specialty steel production and processing, cadmium, selenium, lead, and a gallium-rich factor. The Unmix and PMF common factors agree reasonably well, both in composition and contributions to PM2.5. To further identify and apportion the sources of PM2.5, specific OC compounds that are known markers of some sources were added to the PMF analysis. The results were similar to the original solution, except that the primary OC and EC factor split into two factors. One factor was associated with vehicles as identified by the hopanes, PAH's, and other OC compounds. The other factor had strong correlations with the OC and EC ambient data as well as wood smoke markers such as levoglucosan, syringols, and resin acids.  相似文献   

12.
This study describes a method to calculate equivalent black carbon (EBC) concentrations comparable to those obtained from optical filter-based EBC instrumentation from data obtained with a semi-continuous thermo-optical analyzer (Sunset Laboratory Inc., USA) without any need of instrument alterations or extra costs. A correction for the reflection of the Sunset analyzer laser beam by the walls of the sampling tube is introduced. EBCSunset concentrations obtained during two intensive campaigns in Prague (one in winter and one in summer) were compared also to EBC measured by an AE31 Aethalometer (EBCaeth), an AE51 MicroAethalometer (EBCmicro), and a Multi Angle Absorption Photometer (EBCMAAP). Good agreement was observed in both campaigns. The EBCSunset data were also corrected for loading effects in two ways—a simple loading correction and a total correction using data also from the MAAP and a nephelometer. The loading corrections gave similar results for EBCSunset and the aethalometer data except for the simple correction for summer EBCSunset data. The multiple scattering correction factors computed for EBCSunset agreed well with those calculated for EBCaeth. The wall reflection correction for the Sunset analyzer data further improves the agreement between EBCSunset and EBCMAAP.

Copyright © 2016 American Association for Aerosol Research  相似文献   


13.
Complementary single particle measurements of organic aerosols using aerosol time-of-flight mass spectrometry (ATOFMS) and Scanning Transmission X-ray Microscopy—Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS) are compared to examine the relationships between particle morphologies and chemical composition of particles having similar sources. ATOFMS measurements provide size-resolved chemical composition information for single particles. Measurements from field campaigns in polluted or urban (Riverside/SOAR 2005; Mexico City/MILAGRO 2006; Port of Long Beach 2007) and clean or marine (Arabian Sea/INDOEX 1999; Sea of Japan/ACE-Asia 2001; Trinidad Head/CIFEX 2004) locations illustrate regional differences. The majority (≥ 85 %) of the number of submicron particles are carbonaceous (including elemental and organic carbon), but represent less than 10% of the number of supermicron particles. Organic carbon (OC) particles are classified into three meta-classes corresponding to (1) combustion generated OC/EC internal mixtures, (2) biomass burning generated K/OC mixtures, and (3) OC/High Mass OC (HMOC) mixtures containing secondary markers of atmospheric processing. Normalized dot products are used to quantify similarity among fragment spectra and indicate that OC particle types are consistent across (and within) platforms. Single particle carbon STXM-NEXAFS measurements during ACE-Asia 2001 and MILAGRO 2006 yield similar source categories based on relative abundances of aromatic, alkane, and carboxylic acid functional groups. All three organic particle types correspond to a variety of very heterogeneous particle morphologies, although the highly oxygenated OC particles with likely secondary organic contributions frequently are nearly spherical, liquid-like particles. Size-resolved number fractions of the major ATOFMS OC particle types show qualitative agreement with OC particle types from STXM-NEXAFS analysis, indicating a correspondence of the OC/EC type with the presence of strong aromatic groups, of the OC/HMOC type with high carboxylic acid groups, and of the biomass burning OC type with aromatic and carbonyl groups. ATOFMS measurements can be used to establish robust statistics for offline single particle techniques, providing the atmospheric context for the functional group and morphological information obtained from STXM-NEXAFS for an improved understanding of the climate impact of organic aerosols.  相似文献   

14.

The GAViM program provides fine particulate and visibility data for several remote locations in Canada. Two long-term intercomparison studies between the GAViM and a major U.S. aerosol monitoring network, IMPROVE, were used to evaluate the uncertainty in the analytical data produced by proton induced x-ray emission (PIXE), proton elastic scattering analysis (PESA), and gravimetric analysis. GAViM and IMPROVE agreed well for elements from Fe to Zn where PIXE is the most sensitive; the relative difference between the 2 networks for Fe and Zn was <2%. Some lighter elements, e.g., sodium or sulphur, revealed a difference of 10-20%. Furthermore, an empiric conversion scheme for the GAViM absorption data produced by the laser integrated plate method (LIPM) was derived from the comparison to the IMPROVE thermal/optical reflectance (TOR) data. This conversion depends on the aerosol composition and is therefore site specific. It allows estimation of the elemental carbon concentrations from the historic raw light absorption values obtained by LIPM. If the mass attenuation coefficient of the fine aerosol collected at the 2 remote GAViM sites is assumed to be equal to 10 m 2 /g, then the results imply that the light absorption coefficient measured by LIPM is generally higher than the true value by up to a factor of 1.3 or 1.8, respectively. In both cases, LIPM overestimated the black carbon content, mostly for the lightly loaded samples.  相似文献   

15.
The variability of optical properties of combustion particles generated from a propane diffusion flame under varying fuel-to-air (C/O) ratios was studied with a three-wavelength nephelometer, a particle soot absorption photometer, and an integrating sphere photometer. Information on particle size distribution, morphology, and elemental carbon to total carbon (EC/TC) ratios were obtained from scanning mobility particle sizer measurements, transmission electron microscopy analyses, and thermal-optical analyses. Particles generated under a low C/O ratio (0.22) showed high elemental carbon fraction (EC/TC = 0.77) and low brown carbon to equivalent black carbon (BrC/EBC) ratio (0.01), and were aggregates composed of small primary particles. Rayleigh–Debye–Gans theory reproduced experimental single-scattering albedo, ω, absorption, and scattering Ångström exponents within 56, 3, and 18%, respectively. In contrast, particles produced under a high C/O ratio (0.60) showed low elemental carbon fraction (EC/TC = 0.09) and high BrC/EBC ratio >100, and were smaller and spherical in shape. Their optical properties were better modeled with Mie theory. By minimizing the difference between calculated and measured ω and Ångström exponents, refractive indices of OC at three visible wavelengths were deduced. Contrary to the widely accepted assumption that refractive index of BC is wavelength independent, BC-rich particles exhibited absorption Ångström exponent >1.0 which implies some degree of wavelength dependence.

Copyright 2015 American Association for Aerosol Research  相似文献   

16.
Carbonaceous matter is a major constituent in urban aerosols, especially in those collected in China. The size distributions of elemental carbon (EC) and organic carbon (OC) in the range of 0.01–18 μm were measured in an urban location in Guangzhou, China in July 2006. The EC size distribution in the accumulation-mode size was characterized by three significant modes with mass median aerodynamic diameters (MMAD) of ~0.15 μm, ~0.40 μm, and ~0.90 μm, with the second one being the most prominent and accounting for approximately half of the total EC mass. The coexistence of the first two accumulation modes in Guangzhou's urban atmosphere could be explained to be a result of emissions from vehicles operating at different loadings. The dominance of the EC accumulation mode at ~0.40 μm has not often been reported in studies conducted in developed countries, but this observation is consistent with EC size distributions measured in a roadway tunnel in this region. This information is important when modeling the role of EC in modulating the radiative balance and investigating the health effects of EC. The third accumulation mode was postulated to be a result of in-cloud processing after emission. OC had the same size modes as EC but different mass distributions among the modes. The carbonaceous materials in the nucleation mode were dominated by OC. Among particles in the accumulation size range, the OC/EC ratio was higher in the third accumulation mode (MMAD: 0.90 μm) than in the first two accumulation modes, suggesting that in-cloud processing was an important pathway for accumulating OC mass during atmospheric processing of EC particles.  相似文献   

17.
A fine particulate matter (PM2.5) monitoring network of filter-based federal reference methods and federal equivalent methods (FRM/FEMs) is used to assess local ambient air quality by comparison to National Ambient Air Quality Standards (NAAQS) at about 750 sites across the continental United States. Currently, FRM samplers utilize polytetrafluoroethylene (PTFE) filters to gravimetrically determine PM2.5 mass concentrations. At most of these sites, sample composition is unavailable. In this study, we present the proof-of-principle estimation of the carbonaceous fraction of fine aerosols on FRM filters using a nondestructive Fourier transform infrared (FT-IR) method. Previously, a quantitative FT-IR method accurately determined thermal/optical reflectance equivalent organic and elemental carbon (a.k.a., FT-IR organic carbon [OC] and elemental carbon [EC]) on filters collected from the chemical speciation network (CSN). Given the similar configuration of FRM and CSN aerosol samplers, OC and EC were directly determined on FRM filters on a mass-per-filter-area basis using CSN calibrations developed from nine sites during 2013 that have collocated CSN and FRM samplers. FRM OC and EC predictions were found to be comparable to those of the CSN on most figures of merit (e.g., R2) when the type of PTFE filter used for aerosol collection was the same in both networks. Although prediction accuracy remained unaffected, FT-IR OC and EC determined on filters produced by a different manufacturer show marginally increased prediction errors suggesting that PTFE filter type influences extending CSN calibrations to FRM samples. Overall, these findings suggest that quantifying FT-IR OC and EC on FRM samples appears feasible.

© 2018 American Association for Aerosol Research  相似文献   


18.

A method for determining the mass size distribution of organic and black carbon (OC and BC) in atmospheric aerosols is introduced. The method relies on a particle sampling with 2 parallel size-segregating devices, a 12-stage Small Deposit area low pressure impactor (SDI) and a virtual impactor (VI), and the subsequent analysis of the samples with thermal and thermal-optical methods, respectively. The method development revealed that SDI is, like other sampling methods, susceptible to serious sampling artifacts and OC pyrolysis during thermal analysis. However, some of the SDI's limitations can be overcome by parallel VI measurements. The good correlation between the SDI and the VI data for most of the samples collected here indicates that under most conditions, the lack of the pyrolysis correction for the SDI samples does not cause significant errors in the OC/BC split. Valuable features of this method are that it offers a good size resolution in both sub- and supermicron size fractions, indicates if there has been serious positive or negative artifacts for OC during sampling, reveals if the samples have been affected by OC pyrolysis during thermal analysis, and provides semiquantitative means by which the OC and BC size distributions can be corrected for the samples being affected by OC pyrolysis. Application of the method to real atmospheric samples is demonstrated, and the major areas requiring further research and/or method development are identified.  相似文献   

19.

Historically, obtaining quantitative chemical information using laser desorption ionization mass spectrometry for analyzing individual aerosol particles has been quite challenging. This is due in large part to fluctuations in the absolute ion signals resulting from inhomogeneities in the laser beam profile, as well as chemical matrix effects. Progress has been made in quantifying atomic species using high laser powers, but very few studies have been performed quantifying molecular species. In this study, promising results are obtained using a new approach to measure the fraction of organic carbon (OC) associated with elemental carbon (EC) in aerosol particles using single particle laser desorption ionization. A tandem differential mobility analyzer (TDMA) is used to generate OC/EC particles by size selecting EC particles of a given mobility diameter and then coating them with known thicknesses of OC measured using a second DMA. The mass spectra of the OC/EC particles exiting the second DMA are measured using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). A calibration curve is produced with a linear correlation (R2 = 0.98) over the range of OC/EC ion intensity ratios observed in source and ambient studies. Importantly, the OC/EC values measured in ambient field tests with the UF-ATOFMS show a linear correlation (R2 = 0.69) with OC/EC mass ratios obtained using semi-continuous filter based thermo-optical measurements. The calibration procedure established herein represents a significant step toward quantification of OC and EC in sub-micron ambient particles using laser desorption ionization mass spectrometry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号