共查询到17条相似文献,搜索用时 68 毫秒
1.
2.
一种新的小波阈值函数及其在振动信号去噪分析中的应用 总被引:7,自引:4,他引:7
摘要:研究一种新的小波收缩阈值函数用于信号的去噪分析,对比分析了硬阈值、软阈值和新收缩阈值函数的优缺点,给出了收缩阈值函数法中的阈值计算详细过程,基于虚拟仪器LabVIEW构建检测齿轮箱系统的振动与噪音检测系统,在MATLAB平台上利用收缩阈值方法开发了对齿轮箱振动和噪声信号进行去噪处理的软件,试验数据的分析表明:基于新的小波阈值函数的信号降噪分析方法去噪效果明显,且保留了原始信号的细节特征,是一种较传统经典去噪手段更为优越的方法,具有较高的实用价值。
相似文献
相似文献
3.
利用Hilbert-Huang变换(Hilbert-Huang Transformation,简称HHT)对滚动轴承进行故障诊断时,发现振动信号中包含的噪声对诊断结果影响较大。为克服此不足,提出了一种小波改进阈值法与HHT相结合的信号分析方法。该方法首先应用小波改进阈值方法对滚动轴承故障信号进行预处理,然后对去噪后的信号进行经验模态分解(Empirical Mode Decomposition,简称EMD),接着选取含有故障信息的本征模函数(Intrinsic Mode Function,简称IMF)分量进行边际谱分析,从而提取出故障特征频率,并判断故障类型。仿真和实验结果验证了该方法的有效性。 相似文献
4.
《中国测试》2016,(7):88-92
由于材料结构的复杂性,超声检测回波信号往往存在很多干扰噪声。针对钢制结构中平底孔的超声检测信号传统小波去噪方法中小波阈值难确定的问题,结合小波良好时频特性和果蝇的全局优化能力,提出基于果蝇算法(FOA)优化小波阈值函数的超声检测信号去噪方法。对原始信号叠加5d B高斯白噪声,通过测试最大信噪比改善量获得最佳小波基和分解层数,采用sym5小波对超声检测信号进行6层分解后,利用果蝇算法对小波阈值进行参数优化,对比传统4种阈值确定方法,提高小波阈值的精度。验证结果表明:该方法对超声检测信号去噪后信噪比、均方根误差和相关性等参数具有满意的效果,去噪效果明显。 相似文献
5.
在信号检测技术中,构造了一个新的阈值函数,与传统的软硬阈值函数相比,连续性好,高阶可导,便于进行各种信号处理和检测。实验仿真结果表明,采用新的阈值函数的去噪效果在信噪比增益和均方误差意义上均优于传统的软硬阈值方法,给检测技术带来了新的发展。 相似文献
6.
研究小波去噪算法中软阈值函数与硬阈值函数的方法,针对一些可变阈值函数的运算复杂的问题,提出一种新的阈值函数。经仿真测试,改进的小波阈值去噪算法的信噪比为20.103,去噪后,数据的均方误差为0.1152。 相似文献
7.
8.
9.
10.
建立了齿轮故障系统试验装置,对齿轮传动系统在各种转速与故障状态下进行测试分析,获取了有关振动信号,对齿轮系统的无故障、齿根裂纹、分度圆裂纹、齿面磨损四种状态信号进行特征提取,并对提取的信号进行基于经验模态EMD分解的小波阈值去噪处理,然后对预处理后的信号进行时频分析与诊断。结果表明,采用基于EMD的小波阈值去噪方法比单纯采用小波阈值去噪对测试信号进行预处理,能提高信噪比,并更加有效的提取出故障特征,而在EMD的小波阈值去噪的基础上,再与时频分析方法相结合能够较好的识别不同运转状况下不同种类的故障,如齿根裂纹、分度圆裂纹、齿面磨损等,可用于对实际工程工作的齿轮系统进行故障诊断。 相似文献
11.
12.
13.
为了对实时采集的水声信号进行数据压缩的同时实现信号降噪,提出了一种动态阈值正交匹配追踪方法(Dynamic Threshold Orthogonal Matching Pursuit,DTOMP)。该方法将稀疏分解原理应用于水声信号的预处理,通过在正交匹配追踪算法中引入阈值约束,并根据噪声分布特性将其分为两部分,用以控制预设置的参数。通过对加噪正弦信号、实测鲸鱼叫声和舰船辐射噪声信号的降噪实验,表明该方法能够在对原始水声信号进行压缩的同时提高信噪比,且在较宽的信噪比变化范围内比小波方法具有更好的降噪性能。 相似文献
14.
15.
一种转子故障信号的小波降噪新方法 总被引:12,自引:0,他引:12
由于用小波分析进行转子故障信号降噪,小波分解的层数难于确定,降噪的效果与故障转子的转速和信号采样频率密切相关,因此降噪过程难于自动完成。文章针对该问题,提出了一种新的转子故障信号小波降噪方法,首先对原始数据进行重新采样,然后再用小波变换分解到规定的层数,最后运用D onoho软阈值法实现自动降噪。本文方法能够有效地克服小波分解层数对转速和采样频率的依赖。大量的仿真和实验算例对新方法进行了验证,表明了其有效性和稳健性。 相似文献
16.
小波分层阈值降噪法及其在发动机振动信号分析中的应用 总被引:6,自引:4,他引:6
摘要:通过对小波消噪原理的分析及常用阈值规则的降噪性能对比,提出了基于小波细节系数自相关性分析的分层阈值降噪法,描述了根据有用信号最小频率成分确定最大分解层数的方法,给出了分层阈值降噪法的步骤,并对模拟的含噪振动信号进行了试验研究,结果表明,该方法具有较好的降噪效果,尤其适合于强噪声背景下弱信号的恢复,有利于较高频率有用信号的提取。最后,对小波分层阈值降噪法在发动机振动信号分析中的实际应用进行了研究,研究证明,该方法可以有效地抑制背景噪声,提取有用状态信息,为发动机振动信号预处理提供了一种切实可行的方法。 相似文献
17.
基于EEMD的振动信号自适应降噪方法 总被引:2,自引:4,他引:2
摘 要:应用集合经验模式分解(Ensemble empirical mode decomposition ,EEMD)能有效抑制模态混叠的特性,根据白噪声经经验模式分解(Empirical mode decomposition, EMD)后其固有模式函数(intrinsic mode functions ,IMF)分量的能量密度与其平均周期的乘积为一常量这一特点设计了自动选择IMF分量重构信号的算法,提出了基于EEMD的振动信号自适应降噪方法。对仿真信号和滚动轴承振动信号的降噪结果表明了该降噪方法的可行性和有效性。 相似文献