首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion implantation into III–V nitride materials is animportant technology for high-power and high-temperature digital and monolithic microwave integrated circuits. We report the results of the electrical, optical, and surface morphology of Si ion-implanted GaN films using furnace annealing. We demonstrate high sheet-carrier densities for relatively low-dose (natoms=5×1014 cm−2) Si implants into AlN/GaN/sapphire heteroepitaxial films. The samples that were annealed at 1150°C in N2 for 5 min exhibited a smooth surface morphology and a sheet electron concentration ns ∼9.0×1013 cm−2, corresponding to an estimated 19% electrical activation and a 38% Si donor activation in GaN films grown on sapphire substrates. Variable-temperature Hall-effect measurem entsindicate a Si donor ionization energy ∼15 meV.  相似文献   

2.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

3.
In situ wafer curvature measurements were used in combination with postgrowth structural characterization to study the evolution of film stress and microstructure in GaN layers grown by metalorganic chemical vapor deposition on N+ ion-implanted AlN/Si (111) substrates. The results were compared with growth on identical unimplanted substrates. In situ stress measurements revealed that, for the unimplanted sample, the GaN initiated growth under compressive stress of −1.41 GPa which arose due to lattice mismatch with the AlN buffer layer. In contrast, GaN growth on the ion-implanted sample began at lower compressive stress of −0.84 GPa, suggesting a reduction in epitaxial stress. In both cases, the compressive growth stress was fully relaxed after ~0.7 μm and minimal tensile stress was generated during growth. During post-growth cooling, tensile stress was introduced in the GaN layer of both samples due to thermal expansion mismatch. Post-growth optical microscopy characterization, however, demonstrated that the ion-implanted sample had lower density of channeling cracks compared with the unimplanted sample. Cross-sectional transmission electron microscopy images of the sample grown on ion-implanted Si with no post-implantation nitrogen annealing revealed the formation of horizontal cracks in the implanted region beneath the AlN buffer layer. The weakened layer acts to decouple the GaN film from the Si substrate and thereby reduces the density of channeling cracks in the film after growth.  相似文献   

4.
We have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (00l)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ, = 248 nm, τ = 20 nanosecs). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using x-ray diffraction, high-resolution transmission electron microscopy, and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9 × 10−4 Torr) at 775°C on (001)Si substrate having <001>YSZ // <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mTorr) at 650°C. The temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4-0.6 Torr, respectively. The laser fluence to deposit this multilayer structure was 2.5-5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800-1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coercive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.  相似文献   

5.
The authors have demonstrated photochemical deposition of aluminum oxides from Trimethylaluminum (TMA) and N2O by using a pulsed ArF excimer laser (193 nm). Both TMA and N2O are efficiently photodissociated by the 193 nm light. The films are grown on Si and InP wafers contained in a low pressure flowing cell with a heated substrate. The incident laser beam is focused and parallel to the substrate surface. Typical deposition rates are 80–150 A/min. Stripes of aluminum oxide 30 mm wide are uniformly grown on 7.5 cm Si-wafers. The film composition and purity have been investigated using Auger and Infra-red spectroscopy analysis. Surprising results are the relatively low concentration of carbon. Refractive index and thickness have been determined by an ellipsometer. Typical values for the films are 1.54–1.62. Metal-oxide-semiconductor capacitors have been fabricated and characterized. The C-V curves for n-InP/aluminum oxide have clockwise hysteresis, and minimum loop width is less than 0.5 V. The surface state densities are 1 × 1011 cm-2 eV−1 at the mid band gap.  相似文献   

6.
The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 μm thick, Si-doped, n-type (1×1017 cm−3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ∼30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.  相似文献   

7.
The ferromagnetic ordering in Mn-doped ZnO thin films grown by pulsed laser deposition (PLD) as a function of oxygen pressure and substrate temperature has been investigated. Room-temperature ferromagnetic behaviors in the Mn-doped ZnO films grown at 700°C and 800°C under 10−1 torr in oxygen pressure were found, whereas ferromagnetic ordering in the films grown under 10−3 torr disappeared at 300 K. The large positive magnetoresistance (MR), ∼10%, was observed at 5 K at low fields and small negative MR was observed at high fields, irrespective of oxygen pressure. In particular, anomalous Hall effect (AHE) in the Mn-doped ZnO film grown at 700°C under 10−1 Torr has been observed up to 210 K. In this work, the observed AHE is believed to be further direct evidence demonstrating that the Mn-doped ZnO thin films are ferromagnetic.  相似文献   

8.
Highly crystalline SrRuO3 (SRO) and La0.5Sr0.5CoO3 (LSCO) thin films were deposited on (100) Pt/ MgO by pulsed laser deposition. The films were mainly (001) textured normal to the substrate surface with a high degree of in-plane orientation with respect to the substrate’s major axes. These films were characterized using x-ray diffraction, Rutherford backscattering, four-point probe resistivity measurement, and transmission electron microscopy. The room temperature resistivity for LSCO and SRO films on Pt/MgO was found to be ∼35 and ∼40 μΩ-cm, respectively. An ion beam minimum channeling yield of ∼43% and ∼33% was obtained for LSCO and SRO films, respectively. The interface between Pt and oxide was found to be smooth and free from any interfacial diffusion. This result showed that high-quality low resistivity oxide thin films can be deposited on Pt.  相似文献   

9.
AgInSe2 thin films on glass substrates have been prepared by pulsed laser deposition. Rectifying heterojunctions with a pronounced photovoltaic effect have been fabricated for the first time by placing such films in optical contact with layered III-VI (InSe, GaSe) semiconductors. The maximum photosensitivity of such heterostructures is 10–103 V/W. It is concluded that the prepared structures can be used as wideband selective photoreceivers. Fiz. Tekh. Poluprovodn. 33, 1205–1208 (October 1999)  相似文献   

10.
Nanocrystalline GaN films were prepared by thermal treatment of amorphous GaN films under flowing NH3 at a temperature of 600°C to 950°C for 1 h to 2 h. X-ray diffraction and field-emission scanning electron microscopy confirmed the formation of high-crystal-quality hexagonal GaN films with preferential (002) orientation. The photoluminescence spectrum showed a sharp peak near the band gap emission located at 368 nm and a broad blue peak centered at 430 nm. Five first-order Raman modes near ∼143 cm−1, 535 cm−1, 555 cm−1, 568 cm−1, and 731 cm−1 with two new additional Raman peaks at 257 cm−1 and 423 cm−1 were observed. The origin of these new Raman peaks is discussed briefly.  相似文献   

11.
Thin films of Si-doped AlxGa1−xN (0.03≤x≤0.58) having smooth surfaces and strong near-band edge cathodoluminescence were deposited at 0.35–0.5 μm/h on on-axis 6H-SiC(0001) substrates at 1100°C using a 0.1 μm AlN buffer layer for electrical isolation. Alloy films having the compositions of Al0.08Ga0.92N and Al0.48Ga0.52N exhibited mobilities of 110 and 14 cm2/V·s at carrier concentrations of 9.6×1018 and 5.0×1017 cm−3, respectively. This marked change was due primarily to charge scattering as a result of the increasing Al concentration in these random alloys. Comparably doped GaN films grown under similar conditions had mobilities between 170 and ∼350 cm2/V·s. Acceptor doping of AlxGa1−xN for x≤0.13 was achieved for films deposited at 1100°C. No correlation between the O concentration and p-type electrical behavior was observed.  相似文献   

12.
A hydride vapor phase epitaxy was employed to grow the 10∼240 μm thick GaN films on a (111) MgAl2O4 substrate. The GaN films on a MgAl2O4 substrate revealed characteristics of photoluminescence (PL) in impurity doped GaN, which may be due to the out-diffusion and auto-doping of Mg from the MgAl2O4 substrate during GaN growth. The PL peak energy of neutral donor bound exciton emission and the frequency of Raman E2 mode were decreased by increasing the GaN thickness, due to the residual strain relaxation in the epilayers. The dependence of Raman E2 mode of GaN films on residual strain can be estimated as Δ ω/Δ σ=3.93 (cm−1/GPa).  相似文献   

13.
The GaN films are grown by pulsed laser deposition (PLD) on sapphire, AlN(30 nm)/Al2O3 and AlN(150 nm)/Al2O3, respectively. The effect of AlN buffer layer thickness on the properties of GaN films grown by PLD is investigated systematically. The characterizations reveal that as AlN buffer layer thickness increases, the surface root-mean-square (RMS) roughness of GaN film decreases from 11.5 nm to 2.3 nm, while the FWHM value of GaN film rises up from 20.28 arcmin to 84.6 arcmin and then drops to 31.8 arcmin. These results are different from the GaN films deposited by metal organic chemical vapor deposition (MOCVD) with AlN buffer layers, which shows the improvement of crystalline qualities and surface morphologies with the thickening of AlN buffer layer. The mechanism of the effect of AlN buffer layer on the growth of GaN films by PLD is hence proposed.  相似文献   

14.
As a first step towards developing heterostructures such as GaAs/Ge/Si entirely by chemical vapor deposition, Ge films have been deposited on (100) Si by the pyrolysis of GeH4. The best films are grown at 700° C and are planar and specular, with RBS minimum channeling yields of ≈4.0% (near the theoretical value) and defect densities of 1.3 x 108 cm−2. Variations of in-situ cleaning conditions, which affect the nature of the Si substrate surface, greatly affect the ability to get good epitaxial growth at 700° C. The majority of the defects found in the Ge films are extrinsic stacking faults, formed by dissociation of misfit and thermal expansion accommodation dislocations. The stacking fault density is not significantly reduced by post-deposition annealing, as is the case for the dislocations observed in MBE Ge films. It is suggested that lowering the CVD growth temperature through the use of high vacuum deposition equipment would result in dislocation defects like those of MBE films which could then be annealed more effectively than stacking faults. Films with defect densities equivalent to MBE Ge films (~2 x 107 cm−2) could then probably be produced.  相似文献   

15.
Low-pressure, metal-organic vapor-phase epitaxy (MOVPE) was used to grow AlN/GaN metal-insulator-semiconductor (MIS) heterostructures with AlN thickness between 3 nm and 30 nm. The Hall mobility was found to decrease with increasing AlN thickness, with optimal mobility measured at 5-nm AlN. By decreasing the ammonia flow during AlN growth (lower V/III ratio), surface and interface quality were greatly improved with a corresponding improvement in electrical properties. For the optimal V/III ratio, room-temperature (RT) mobility and sheet charge were 891 cm2/Vs and 2.15×1013 cm−2, respectively. The best RT mobility, for both optimal V/III and thickness, was 1015 cm2/Vs with a sheet charge of 1.1×1013 cm−2.  相似文献   

16.
The structure and crystal quality of epitaxial films of SiC/AlN/6H-SiC(0001) prepared by chemical vapor deposition were evaluated by high resolution transmission electron microscopy (HRTEM) and x-ray diffraction techniques. Cross-sectional HRTEM revealed an abrupt AlN layer-6H-SiC substrate junction, but the transition between the AlN and SiC layers was much rougher, leading to the formation of a highly disordered SiC region adjacent to the interface. The AlN layer was relatively defect free, while the SiC layer contained many microtwins and stacking faults originating at the top SiC/AlN interface. The SiC layer was the 3C-polytype, as determined by double crystal x-ray rocking curves. The SiC layers were under in-plane compressive stress, with calculated defect density between 2–4×107 defects/cm−2.  相似文献   

17.
An analytical expression for the density of states of a graphene monolayer interacting with a silicon carbide surface (epitaxial graphene) is derived. The density of states of silicon carbide is described within the Haldane-Anderson model. It is shown that the graphene-substrate interaction results in a narrow gap of ∼0.01–0.06 eV in the density of states of graphene. The graphene atom charge is estimated; it is shown that the charge transfer from the substrate is ∼10−3–10−2 e per graphene atom.  相似文献   

18.
Wet etch rates at 25°C for Zn0.9Mg0.1O grown on sapphire substrates by pulsed laser deposition (PLD) were in the range 300–1100 nm · min−1 with HCl/H2O (5×10−3−2×10−2 M) and 120–300 nm · min−1 with H3PO4/H2O (5×10−3−2×10−2 M). Both of these dilute mixtures exhibited diffusion-limited etching, with thermal activation energies of 2–3 kCal · mol−1. By sharp contrast, the etch rates for ZnO also grown on sapphire by PLD were much slower in similar solutions, with rates of 1.2–50 nm · min−1 in HCl/H2O (0.01–1.2 M) and 12–54 nm · min−1 in H3PO4/H2O (0.02–0.15 M). The etching was reaction limited over the temperature range 25–75°C, with activation energies close to 6 kCal · mol−1. The resulting selectivity of Zn0.9Mg0.1O over ZnO can be a high as ∼400 with HCl and ∼30 with H3PO4.  相似文献   

19.
We have developed a technology for producing n-type GaxIn1−x N/p-Si heterostructures by combined pyrolysis of indium and gallium monoammoniate chlorides, making it possible to obtain heterolayers with composition varying over wide limits (from GaN up to InN). The composition and basic electric and optical characteristics of nitride films were determined. The electric and photoelectric properties of the heterostructures with GaxIn1−x N films of different composition were investigated. It was shown that the anisotypic heterojunction n-GaxIn1−x N/p-Si is a promising photosensitive element for detecting visible-range radiation. The maximum values of the specific detectivity were D*=1.2×1011 Hz1/2·W−1 at 290 K. A band diagram of the heterojunction was constructed. Fiz. Tekh. Poluprovodn. 32, 461–465 (April 1998)  相似文献   

20.
We report on the properties of a novel insulator, AlO:N for application in semiconductors produced by thermally oxidizing AlN thin films. The process steps were similar to those used for SiO2, creating the possibility of a new technology for metal-insulator-semiconductor field effect devices and integrated circuits. Thin films of AlN were deposited by radio-frequency magnetron reactive sputtering on p-type silicon or fused quartz substrates. As-deposited AlN film thickness ranged from 0.05 to 0.7 μm, with polycrystalline structure revealed by x-ray diffraction. Oxidation was performed under O2 flow at 800 to 1100°C for 1–4 h. AlN films were oxidized partially or fully into Al2O3, depending on initial thickness, oxidation temperature and time. X-ray diffraction indicates the presence of several phases of Al2O3 at 1000°C, whereas at 1100°C, only the α-Al2O3 phase was found. Considering the importance of surface field effect device applications, the surfaces of oxidized films were examined with atomic force microscopy in air, and a clear change was observed in the surface structure of the oxidized film from that of as-deposited AlN films. Capacitance-voltage measurements of metal-oxide-semiconductor structures yielded a dielectric constant of AlO:N between 8–12 and a net oxide-trapped-charge density of ∼1011 cm−2. Using Fourier transform infrared spectrometry transmittance and reflectance, some α-Al2O3 modes were observed. In this paper, we describe the general properties of the oxide thin films, bulk and interface, at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号