首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative investigation between pneumatic nebulization and continuous hydride generation as sample introduction methods for inductively coupled plasma mass spectrometry was carried out for isotopic analysis of selenium in biological samples of interest to human metabolic studies. Experimental parameters known to affect the analytical performance of the system were evaluated: instrument operating parameters, analyte solution/NaBH4 flow rate, and NaBH4 concentration. Signal-to-background ratio was examined for the three stable isotopes 74Se, 77Se, and 82Se. While background count rates for the hydride system were 3-5 times larger than those for the nebulization method, the signal-to-background ratios, normalized for Se concentration, were 30-50 times greater for the hydride system. Absolute detection limits (3 sigma) for the two systems were 20-60 (nebulization) and 0.6-1.8 (hydride) ng of Se. Overall memory of the hydride system was evaluated. Measurable effects were observed within 400 s from switching to analyte solution with differing isotopic composition, only if the sequence of analysis was from high to low ratio (1-4% bias). However, if the sequence was from low to high ratio, precise and linear calibration plots could be obtained over the isotope ratio range of an order of magnitude or higher. While further improvements might lead to potential enhancement of sensitivity and precision of as much as an order of magnitude, the present performance of the hydride system was satisfactory in relation to the requirements of isotopic analysis for metabolic investigations employing 74Se as the in vivo stable isotope tracer.  相似文献   

2.
该文研究氢化物发生-电感耦合等离子体发射光谱法测定非合金钢(碳素钢)和低合金钢中微量砷的分析方法,考察高频功率、雾化压力、辅助气流量、泵速等仪器工作条件与消解用酸及用量、硼氢化钠浓度对光谱强度的影响,并讨论王水、铁基体、共存离子对测定结果的背景干扰与消除方法.确定的最佳工作条件为:高频功率为1350 W,雾化压力为22...  相似文献   

3.
The coupling of an electrothermal vaporization (ETV) apparatus to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) is described. The ability of the ICP-TOFMS to produce complete elemental mass spectra at high repetition rates is experimentally demonstrated. A signal-averaging data acquisition board is employed to rapidly record complete elemental spectra throughout the vaporization stage of the ETV temperature cycle; a solution containing 34 elements is analyzed. The reduction of both molecular and atomic isobaric interferences through the temperature program of the furnace is demonstrated. Isobaric overlaps among the isotopes of cadmium, tin, and indium are resolved by exploiting differences in the vaporization characteristics of the elements. Figures of merit for the system are defined with several different data acquisition schemes capable of operating at the high repetition rate of the TOF instrument. With the use of both ion counting and a boxcar averager, the dynamic range is shown to be linear over a range of at least 6 orders of magnitude. A pair of boxcar averagers are used to measure the isotope ratio for silver with a precision of 1.9% RSD, despite a cycle-to-cycle precision of 19% RSD. Detection limits of 10-80 fg are calculated for seven elements, based upon a 10-microL injection.  相似文献   

4.
5.
Individual ion clouds, each produced in the ICP from a single drop of sample, were monitored using time-resolved mass spectrometry and optical emission spectrometry simultaneously. The widths of the ion clouds in the plasma as a function of distance from the point of initial desolvated particle vaporization in the ICP were estimated. The Li(+) cloud width (full width at halfmaximum) varied from 85 to 272 μs at 3 and 10 mm from the apparent vaporization point, respectively. The Sr(+) cloud width varied from 97 to 142 μs at 5 and 10 mm from the apparent vaporization point, respectively. The delays between optical and mass spectrometry signals were used to measure gas velocities in the ICP. The velocity data could then be used to convert ion cloud peak widths in time to cloud sizes in the ICP. Li(+) clouds varied from 2.1 to 6.6 mm (full width at half-maximum) and Sr(+) clouds varied from 2.4 to 3.5 mm at the locations specified above. Diffusion coefficients were estimated from experimental data to be 88, 44, and 24 cm(2)/s for Li(+), Mg(+), and Sr(+), respectively. The flight time of ions from the sampling orifice of the mass spectrometer to the detector were mass dependent and varied from 13 to 21 μs for Mg(+) to 93 to 115 μs for Pb(+).  相似文献   

6.
A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a 201Hg isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin(II) chloride. Measurements of 201Hg/202Hg isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is approximately 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is approximately 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils.  相似文献   

7.
Klaue B  Blum JD 《Analytical chemistry》1999,71(7):1408-1414
A magnetic sector inductively coupled plasma mass spectrometer (ICPMS) was applied to the determination of arsenic in drinking water samples using standard liquid sample introduction in the high-resolution mode (M/delta M = 7800) and hydride generation in the low-resolution mode (M/delta M = 300). Although high mass resolution ICPMS allowed the spectral separation of the argon chloride interference, the accompanying reduction in sensitivity at high resolution compromised detection and determination limits to 0.3 and 0.7 microgram/L, respectively. Therefore, a hydride generation sample introduction method, utilizing a new membrane gas-liquid separator design, was developed to overcome the chloride interference. Due to the high transport efficiency and the 50-100 times higher sensitivity at M/delta M = 300, the HG-ICPMS method resulted in an over 2000-fold increase in relative sensitivity. The routine detection and quantification limits were 0.3 and 0.5 ng/L, respectively. The results for both methods applied to the analysis of over 400 drinking water samples showed very good agreement at concentrations above 1 microgram/L. For concentrations between 0.01 and 1 microgram/L, only HG-ICPMS provided accurate quantitative results. Membrane desolvation, mixed-gas plasmas, and the addition of organic solvents for the reduction of the ArCl+ interference were also investigated and evaluated for trace As determination.  相似文献   

8.
The major problems in the analysis of various natural and potable waters by the method of inductively coupled plasma mass spectrometry (sampling, matrix effects, and spectral interferences) are studied; recommendations for addressing them are given. New data on the use of robust conditions for spectrometer settings to increase its tolerance to matrix effects are considered. The advantages of combination of mass spectrometry with the simpler atomic emission method, which allows expanding the range of determined elements and increasing the reliability of the analysis, are discussed.  相似文献   

9.
An ICPMS method for the determination of phytic acid in human urine based on the total phosphorus measurement of purified extracts of phytic acid is described. Pretreatment of the sample is required to avoid interference in the ICPMS detection from other phosphorus compounds accompanying phytic acid in urine such as phosphate or pyrophosphate. This treatment consists of a simple filtration of the urine sample followed by complete separation of phytic acid from the mentioned phosphorus components using an anion-exchange solid-phase extraction. Separation/recovery conditions, optimized for standards of phytic acid prepared in water and artificial urine, were successfully applied to natural urine samples, resulting in adequate accuracy and precision. Linear range (0.02-0.6 mg of phytic acid L(-)(1)) and limit of detection (5 microg L(-)(1) phytic acid) are adequate for analysis of the usual amounts of phytic acid present in urine. Phosphate, pyrophosphate, and pH of urine samples at concentrations exceeding their normal physiological ranges do not affect the determination of phytic acid. Because of the simplicity, low sample requirement, and relatively high sample throughput (10 to 6 min per sample for runs between 50 and 100 samples, respectively), the present method presents the best alternative to current methods for phytic acid determination in urine. Results also show that the method is adequate for the differentiation of levels of phytic acid excretion from patients suffering from oxalocalcic urolithiasis and healthy controls, suggesting that low phytic acid concentrations in urine lead to elevated risk of oxalocalcic urolithiasis.  相似文献   

10.
The combination of ultrasonic nebulization with membrane desolvation (USN-MD) is utilized to determine active pharmaceutical ingredients (API) by heteroatom inductively coupled mass spectroscopy (ICP-MS) detection. Ultrasonic nebulization provides efficient sampling while use of the membrane desolvator acts to reduce solvent-based interferences. This approach reduces interferences sufficiently so that a standard argon ICP-quadrupole MS can be utilized. Examined APIs and associated heteroatoms included: phosphomycin (P), amoxicillin (S), chlorpropamide (Cl), and ofloxacin (F). The optimum plasma r.f. powers for P, S, and Cl were in the 1000 to 1200 watts range. The high ionization energy of F required that the plasma be operated at 1500 W. The 16O2+ interference at mass 32 precluded determinations using the sulfur-32. The sulfur-34 (4.2% natural isotopic abundance), however, was relatively free of isobaric interferences. Interferences were relatively small at the mass 35 isotope of Cl, but increased with higher ICP r.f. powers. Overlaps were significant at the masses of monoisotopic species, fluorine-19 and phosphorus-31. Detection limits for P, S, Cl, and F of 2, 3, 90, and 3000 ng/mL, respectively, were generally lower than those produced with other quadrupole systems and comparable to or better than values published utilizing high-resolution instruments.  相似文献   

11.
Li H  Luo Y  Li Z  Yang L  Wang Q 《Analytical chemistry》2012,84(6):2974-2981
We reported novel Ag-TiO(2)- and ZrO(2)-based photocatalytic vapor generation (PCVG) systems as effective sample introduction techniques for further improving the sensitivity of the atomic spectrometric determination of selenium for the first time, in which the conduction band electron served as a "reductant" to reduce selenium species including Se(VI) and convert them directly into volatile H(2)Se, which was easily separated from the sample matrix and underwent more effectively subsequent atomization and/or ionization. These two PCVG systems helped us to overcome the problem encountered in the most conventional KBH(4)/OH(-)-H(+) system, in that Se(VI) was hardly converted into volatile selenium species without the aid of prereduction procedures. The limits of detection (LODs) (3σ) of the four most typical Se(IV), Se(VI), selenocystine ((SeCys)(2)), and selenomethionine (SeMet) species were, respectively, down to 1.2, 1.8, 7.4, and 0.9 ng mL(-1) in UV/Ag-TiO(2)-HCOOH, and 0.7, 1.0, 4.2, and 0.5 ng mL(-1) in UV/ZrO(2)-HCOOH with the relative standard deviations (RSDs) lower than 5.1% (n = 9 at 1 μg mL(-1)) when using atomic fluorescence spectrometry (AFS) under flow injection mode. They reached 10, 14, 18, and 8 pg mL(-1) in UV/Ag-TiO(2)-HCOOH, and 6, 7, 10, and 5 pg mL(-1) in UV/ZrO(2)-HCOOH with the RSDs lower than 4.4% (n = 9 at 10 ng mL(-1)) when using inductively coupled plasma mass spectrometry (ICPMS). After the two PCVG systems were validated using certified reference materials GBW(E)080395 and SELM-1, they were applied to determine the total Se in the selenium-enriched yeast sample and used as interfaces between high-performance liquid chromatography (HPLC) and AFS or ICPMS for selenium speciation in the water- and/or enzyme-extractable fractions of the selenium-enriched yeast.  相似文献   

12.
A method for the determination of U and Th at sub-ppt levels in high-purity Pb samples using extraction chromatography with ICPMS detection is described. Following acid digestion, uranium and thorium are separated from the lead matrix using UTEVA resin. Sorption and elution procedures were optimized, the potential reusability of the chromatographic resin was evaluated, and a performance comparison between prepacked and freshly prepared UTEVA column was made. Uranium could be eluted with 0.025 M HCl and Th then recovered using 0.5% oxalic acid. Recovery yields for U exceed 80% whereas those for Th were typically 60%. Procedural detection limits of 0.5 and 1.5 pg g(-)(1) were obtained for U and Th, respectively. For purposes of comparison, GD-MS analysis of samples was also performed, yielding results consistent with those generated by ICPMS but with inferior detection power.  相似文献   

13.
14.
A new thermospray nebulizer based on the absorption of microwave radiation (MWTN) by aqueous solutions of strong acids is presented for the first time. To this end, a given length of the sample capillary is placed inside the cavity of a focused microwave system. A small piece of a narrower capillary tubing is connected at the tip of the sample capillary, outside the microwave cavity, to build up pressure. Drop size distributions of primary aerosols are exhaustively measured in order to evaluate the influence of several experimental variables (microwave power, liquid flow, irradiation length, inner diameter of the outlet capillary, nature and concentration of the acid) on the characteristics of the primary aerosol that are related to the emission signal. These experiments have been performed mainly to increase our understanding of the microscopic process of this new type of aerosol generation. A standard Meinhard nebulizer was employed for comparison. Under the best conditions the entire aerosol volume is contained in droplets smaller than 20 μm compared with 45% of the volume of the aerosol generated by the Meinhard. Hence, higher analyte and aerosol transport rates are to be expected for the MWTN compared with the Meinhard nebulizer. As any highly efficient nebulizer, MWTN requires a desolvation unit. For solutions 0.75 M in strong acid, the new nebulizer improves sensitivity (1.0-2.8 times), limits of detection (1.2-3.0 times), and background equivalent concentration (0.9-2.0 times) as compared to the standard Meinhard nebulizer, features many of the advantages of the conventional thermospray nebulizer, and overcomes some of its drawbacks (MWTN does not show corrosion problems and works at lower pressure, the aerosol characteristics are not modified when the PTFE capillary is replaced).  相似文献   

15.
16.
An approach of sample introduction for inductively coupled mass spectrometry (ICPMS), diode laser thermal vaporization (DLTV) is described. The method allows quantitative determination of metals in submicroliter volumes of liquid samples. Laser power is sufficient to induce pyrolysis of a suitable substrate with the deposited sample leading to aerosol generation. Unlike existing sample introduction systems based on laser ablation, it uses a NIR diode laser rather than an expensive high-energy pulsed laser. For certain elements, this sample introduction technique may serve as an alternative to solution analysis with conventional nebulizers. Using a prearranged calibration set, DLTV ICPMS provides rapid and reproducible sample analysis (RSD ~ 10%). Sample preparation is fast and simple, and the prepared samples can easily be archived and transported. The limits of detection for Co, Ni, Zn, Mo, Cd, Sn, and Pb deposited on the preprinted paper were found to be in the range of 0.4-30 pg. The method was characterized, optimized, and applied to the determination of Co in a drug preparation, Pb in whole blood, and Sn in food samples without any sample pretreatment.  相似文献   

17.
目前,实验室测定矿石中银的方法主要有银的光度法、火焰原子吸收光谱法、石墨炉原子吸收光谱法等等,为了更好的简化测量过程、提高工作效率,本文旨在建立更适宜的、能满足于高中低含量银的测试方法,采用电感耦合等离子体光谱法测定金属矿中银的含量.样品采用氢氟酸、硝酸、硫酸(体积比10∶5∶1)溶解,赶净氟和破坏有机物后,经(1+1...  相似文献   

18.
A novel hydride generation (HG) interface for coupling capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICPMS) is presented in this work. The CE-HG-ICPMS interface was applied to the separation and quantitation of common arsenic species. Lack of a commercially available HG interface for CE-ICPMS led to a three concentric tube design allowing alleviation of back pressure commonly observed in CE-HG-ICPMS. Due to the high sensitivity and element-specific detection of ICPMS, quantitative analysis of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid was achieved. Optimization of CE separation conditions resulted in the use of 20 mmol L(-1) sodium borate with 2% osmotic flow modifier (pH 9.0) and -20 kV applied potential for baseline resolution of each arsenic species in the shortest time. Hydride generation conditions were optimized through multiple electrophoretic separation analyses with 5% HCl and 3% NaBH(4) (in 0.2% NaOH) determined to be the optimum conditions. After completion of system optimization, detection limits obtained for the arsenic species were less than 40 ng L(-1) with electromigration time precision less than 1% within a total analysis time of 9.0 min. Finally, the interface was used for speciation analysis of arsenic in river and tap water samples.  相似文献   

19.
20.
A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 microm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5-120 microL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8-1.0 L/min when a 50 microm i.d. by 150 microm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24-95%) at the sample uptake rates of 5-100 microL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 microL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1-1.7% RSDs) are slightly better than those with the CFN (1.6-2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5-100 microL/min. The free aspiration rate of the HECFMN is 8.9 microL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号