首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feasibility of using sulfur:limestone autotrophic denitrification (SLAD) pond reactors to treat nitrate-contaminated water or wastewater after secondary treatment was investigated with four lab-scale continuously fed SLAD ponds. The start-up period, temperature effects, and effects of different feed solutions were evaluated. With an influent concentration of 30 mg NO3?–N/L at an HRT of 30 days, the pond reactors had an overall nitrate removal efficiency of 85–100%. Effluent nitrite concentrations were <0.2 mg N/L in all tests. Aerobic conditions could result in a decrease of the SLAD pH of the pond by 2 to 3 units and a large increase in sulfate production ( ~ 1600–1800?mg-SO42?/L). Under unmixed (anoxic) conditions, the pH and sulfate produced were maintained at approximately 5.5 to 5.6 and 400–600?mg-SO42?/L, respectively, in all the SLAD ponds. Temperature affected the pond reactors adversely. By assuming that a first-order reaction occurred in a SLAD pond reactor, the temperature-activity coefficient, θ was found to be 1.068. Treatment of nitrate-contaminated surface water and wastewater using SLAD pond systems is feasible only if (1) the chemical oxygen demand (COD)/nitrate–N (COD/N) ratio is low (<1.2 with an initial NO3? concentration of 30 mg-N/L), (2) sulfur:limestone granules are not covered by sediment, and (3) sulfur-utilizing but nondenitrifying bacteria (SUNDB) are greatly inhibited due to the lack of DO in the pond systems. The SLAD ponds are not feasible for the treatment of raw wastewater or surface water if they contain high concentrations of organic matters due to the possible inhibition of sulfur-based autotrophic denitrifiers by heterotrophs (including heterotrophic denitrifiers). In addition, a high sulfate and low DO concentration as well as a low pH in the SLAD effluent of the pond (even when the pond is operated in an unmixed mode) also will limit the application of SLAD pond processes.  相似文献   

2.
Current research focuses on the simultaneous removal of Cd and Cr(VI) in water by a newly developed material having both abilities of sorption and electrochemical reduction. The material was derived from the zeolite modified by Fe(II) chloride followed by sodium borohydride reduction. The Fe-loaded zeolite simultaneously removed Cd and Cr(VI) to below the detection limit at a fairly rapid rate within 1?h for Cd and within 20?h for Cr(VI), under the pH ranging from slightly acid to around neutral. At high concentration of coexisting Cr(VI), the removal efficiency of Fe-loaded zeolite for Cd slightly decreased due to surface fouling by Cr(III) hydroxide precipitations. On the contrary, the coexisting Cd was found to increase the removal rate of Cr(VI) by Fe-loaded zeolite. From the test results, the Fe-loaded zeolite was found to be a possible alternative in simultaneous removal of Cd and Cr(VI) in the aqueous phase.  相似文献   

3.
Numerous sites have been contaminated with polycyclic aromatic hydrocarbons (PAHs), and these sites pose a significant risk to public health and the environment because PAHs are often toxic, mutagenic, and/or carcinogenic. Furthermore, these sites are often difficult or costly to remediate because PAHs are hydrophobic and highly resistant to degradation. The in situ flushing process using surfactants and/or cosolvents has shown great promise for sites possessing uniform and high-permeability soils, but it is generally ineffective for sites containing heterogeneous and/or low-permeability soils. Thus, for difficult soil conditions, electrokinetics can be integrated with the in situ flushing process to improve soil-solution-contaminant interaction. This investigation was conducted to evaluate the effects of two different low-permeability soils, kaolin and glacial till, on electrokinetically enhanced flushing. Each soil type was used in three bench-scale electrokinetic experiments, where each test employed a different flushing solution, deionized water, a surfactant, or a cosolvent. The results indicated that the contaminant was more strongly bound to the glacial till than the kaolin, and this was attributed to its higher-organic content. The glacial till also generated a greater electrical current and electro-osmotic flow, and this was probably a result of its higher-carbonate content and more diverse mineralogy. Based on the contaminant mass remaining in the soil, it was apparent that the surfactant or cosolvent solution caused contaminant desorption, solubilization, and/or migration in both soils, but additional research is required to improve PAH removal efficiency.  相似文献   

4.
This paper deals with the removal of copper ions from aqueous solutions by using surfactant-enhanced powdered activated carbon (PAC)/microfiltration (MF) hybrid process, including the evaluation of process performance and fouling dynamics at various linear alkyl benzene sulfonate (LABS), PAC, and Cu2+ concentrations of feed solution. Although the use of surfactant as an additive material increased the adsorption efficiency in PAC/MF hybrid process, a considerable amount of the flux was lost for surfactant concentration above critical micelle concentration. The process could be employed with a performance of 74.7%, 97.2% and 87?L/m2?h for LABS rejection, Cu2+ rejection and permeate flux at the conditions of 2?g PAC/L, 5?mM LABS, 0.2?mM Cu2+, and 60-min process time. Cu2+ rejection, which increased with increasing of LABS, and PAC amounts decreased with the increase in Cu2+ concentration. It was understood that the increments in LABS, PAC, and Cu2+ concentrations being an indicator for the feed solution quality led to the occurrence of more fouling on the membrane. The analyses of dynamics concerning the fouling behaviors, which were carried out using single and combined pore blocking models, put forward that the cake formation was the main predominant mechanism in the process. It was also determined that the variation of feed contents deduced the presence of rather complex fouling behaviors as a simultaneous function of secondary membrane layer formation and clogging and narrowing of membrane pores by surfactants.  相似文献   

5.
This paper presents a process for the removal of inorganic mercury from aqueous solutions using alumina nanoparticles, which were prepared by the sol-gel method. Different amounts of mercury were added to the particles until a critical concentration was achieved, thus inducing the alumina sol flocculation. Particle growth was monitored during the process using dynamic light scattering. The amount of metal ion adsorbed on the surface of the alumina sols was determined by atomic absorption spectroscopy. Initial mercury concentrations ranging between 50 and 100 ppm decreased to below 1 ppb in a short time.  相似文献   

6.
Sulfur was impregnated onto activated carbon fibers (ACFs) through H2S oxidation catalyzed by the sorbent surface in a fixed-bed reactor. By changing the temperature and duration of the sulfur impregnation process, ACFs with different sulfur contents were developed. Characterization of ACFs before and after sulfur impregnation was conducted by surface area analysis, energy dispersive X-ray analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy, and temperature programmed desorption. Vapor phase mercury adsorption experiments were carried out in a fixed-bed reactor. Sulfur was impregnated mainly as elemental sulfur and the amount of sulfur deposited on the ACF increased with an increase in impregnation temperature. Higher temperature leads to more uniform sulfur distribution inside the sorbent pores. The impregnation process can be explained by a combination of pore filling and monolayer adsorption, with the former mechanism predominating at low temperatures. In the absence of sulfur, the mercury adsorption capacity can be correlated with surface area and pore volume.  相似文献   

7.
Removal of Lead from Contaminated Water and Clay Soil Using a Biosurfactant   总被引:2,自引:0,他引:2  
Lead removal from water and contaminated soils was investigated using biosurfactant, anionic, and nonionic surfactants in continuously stirred batch reactors. Lead-contaminated water up to 100?mg/L and clay soil up to 3,000?mg/kg were used in this investigation. The surfactant concentration up to 10 critical micelle concentration was used. The speciation of lead into the micelles was quantified and the lead removal efficiency depended on the level of contamination, surfactant type, and concentration. Of the surfactants used, biosurfactant (produced from used vegetable oil) had the best removal efficiency (75%) at a lead contamination of 100?mg/L in water at pH of over 12. The Fourier-transformed infrared spectroscopy study showed that the carboxyl group in the biosurfactant was effective in removing the lead from the solution. Langmuir and Freundlich relationships were used to represent the micelle partitioning of lead in the surfactant solutions. Desorption of lead from contaminated kaolinite clay was represented using linear isotherms. The biosurfactant solution had a higher micelle partitioning for the lead from contaminated water and desorbing the lead from the contaminated soil compared to the other chemical surfactants.  相似文献   

8.
This study investigates the effects of adding anionic and nonionic surfactants to the scrubbing liquid during the absorption of naphthalene (Nap) using a wet scrubber. Both batch and continuous experiments were performed on a laboratory-scale packed tower scrubber by adding surfactants to the scrubbing liquid. An anionic surfactant sodium dodecyl sulfate (SDS) and two nonionic polyoxyethylene surfactants C10E4 [tetraethylene glycol mono(decyl ether)] and C14E8 [octaethylene glycol mono(tetradecyl ether)] were used. The concentrations of the surfactant solutions all exceeded the critical micelle concentration. The results of continuous experiments indicate that the efficiencies of removal of naphthalene by C10E4 and C14E8 were 75.0 and 71.9%, respectively, at a concentration of 1.0×10?2?M. The removal efficiency of naphthalene by SDS ranged from 6 to 39% at concentrations from 1.0×10?2 to 1.0×10?1?M under continuous scrubbing. In the batch experiments, the batch naphthalene absorption capacities were estimated to be 31.8?μg?Nap/g?C10E4, 12.9?μg?Nap/g?C14E8, and 2.4 μg Nap/g SDS. A comparison was also made among SDS, C10E4, and C14E8 in terms of cost, foaming, impact of wastewater, removal efficiency, and absorption capacity.  相似文献   

9.
A point-of-use (POU) system was designed and constructed using commercially available activated alumina to remove arsenic from drinking water. Testing with City of Albuquerque chlorinated tap water containing an average of 23 ug/L arsenic found that 1 L of adsorbent would provide water for direct consumption by a family of four for 435 days. It was estimated that the POU system constructed for this study could be sold for $162, and the arsenic adsorption columns were estimated to cost $4. A monthly cost to the customer of $10/month was estimated to purchase, install, and operate this POU system, assuming annual replacement of adsorption media cartridges. The implications of relying upon POU systems to comply with a new drinking water standard for arsenic are discussed.  相似文献   

10.
Simultaneous Removal of Phenol and Nitrate in an Anaerobic Bioreactor   总被引:1,自引:0,他引:1  
Phenol and nitrate are two major pollutants simultaneously occurring in several industrial wastewaters. In this study, a 110-day gradual enrichment of an anaerobic culture has been carried out at 25°C in an anaerobic bioreactor for continuously treating a synthetic wastewater containing 600?mg/L phenol and 430?mg/L?NO3?–N. The results showed that the enriched culture can utilize phenol as a sole electron donor and nitrate as a sole electron acceptor. At the end of the enrichment (on Day 110), 93.3% of phenol and 98.0% of NO3?–N were simultaneously removed at a hydraulic retention time of 20.25?h in the anaerobic bioreactor. The removal of 1?g?NO3?–N required about 3.19?g chemical oxygen demand as the electron donor. Batch tests further revealed that cresol, nitrophenol, and monochlorinated phenol (MCP) could exert detrimental influences on the treatment abilities of the enriched culture. However, the inhibitory effects of cresol were impermanent, as compared to those of nitrophenol and MCP. In order to operate the anaerobic bioreactor steadily, high concentrations of cresol should be diluted before being fed while the existence of nitrophenol and MCP in the bioreactor should be avoided.  相似文献   

11.
Cetyltrimethyl ammonium chloride (CTAC), linear alkylbenzene sulfonate (LAS), and t-octylphenoxypolyethoxyethanol (Triton X-100) were selected to investigate their ability and corresponding physiological mechanisms to control turbulent biofilm formed by Chlorella vulgaris. Significant algicidal activity of CTAC was observed, in contrast to the minor inhibition on algae biomass generated by LAS and Triton X-100. CTAC-treated sample appeared to plasmolyze the algae cell, while LAS treated and Triton X-100-treated sample did not show obvious alteration. The increase in surfactant concentration led to the inhibition efficiency increase in acid phosphatase (ACP) activity. The ACP activities of CTAC-treated sample were restrained most among the tested surfactants. These results indicated the possible mechanisms of surfactants on the growth of algae and the potential application of cationic surfactants in controlling algae blooms.  相似文献   

12.
In this study, a copolymer, cyclodextrin/epichlorohydrin was synthesized and used as an adsorbent to remove two taste and odor causing compounds, namely, MIB and geosmin from the Lake Michigan water. The removal efficiency of these compounds using the copolymer on average was 74.5% for MIB and 77.5% for geosmin as compared to the removal efficiency using powdered activated carbon that resulted in 52.9% and 67% removal, respectively, for the same compounds. The removal efficiencies were examined for an initial concentration range of 20 to 120?μg/L for both MIB and geosmin.  相似文献   

13.
Produced water (water generated during recovery of petroleum) contains large amounts of various hazardous organic compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX). With increasing regulations governing disposal of this water, low-cost treatment options are necessary. This study evaluated the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX from produced water. The long-term effectiveness of SMZ for BTEX removal was investigated along with changes in sorption properties with long-term use. The results of these investigations show that SMZ completely removes BTEX from produced water up to a compound-specific capacity, and that SMZ can be regenerated via air sparging without loss of sorption capacity. The BTEX mobility in laboratory columns of SMZ was in the order of decreasing water solubility and increasing Kow. The most soluble compound, benzene, began to elute at 8 pore volumes (PV), while the least soluble compounds, ethylbenzene and xylenes, began to elute at 50 PV. After treating 4,500 PVs of water in the column system over 10 sorption/regeneration cycles, no significant reduction in sorption capacity of the SMZ for BTEX was observed. The mean Kds determined in these column experiments ranged from 18.3?L/kg for benzene to 95.0?L/kg for p- and m-xylene. Laboratory columns were upscaled to create a field-scale SMZ treatment system. The field-scale system was tested at a natural gas produced-water treatment facility near Wamsutter, Wyo. We observed even greater sorption of BTEX in the field column than predicted from the laboratory results. In the field column, initial benzene breakthrough occurred at 10 PV and toluene breakthrough began at 15 PV, and no breakthrough of ethylbenzene or xylenes occurred throughout the 80 PV experiment. The field and laboratory results, along with the low price of SMZ (about $460?per?metric?t), suggest that SMZ has a potential role in a cost-effective produced water treatment system.  相似文献   

14.
A single-stage phosphorylated polyvinyl alcohol immobilized-cell reactor with three operation modes was employed to investigate the efficiency of simultaneous carbon/nitrogen removal from raw swine wastewater. In continuous aeration mode, the removal efficiency of chemical oxygen demand (COD) and total nitrogen (T-N) exceeded 70 and 8%, respectively, at hydraulic retention time of 10?days. In intermittent aeration (IA) mode, the removal efficiency of COD and T-N was more than 85 and 46%, respectively, when the reactor was set at 50% aeration duration to cycle time to operate at three aerobic-anoxic cycles per day. When oxidation-reduction-potential control was adopted to control the duration of the anoxic period in the real-time controlled (RTC) IA mode for a 4?h aeration period, the total cycle time was reduced by about 20% with a slight increase in removal efficiency of COD (87%) and T-N (47%). The system with no extra chambers required is efficient in simultaneous carbon/nitrogen removal.  相似文献   

15.
Carbon Adsorption and Air-Stripping Removal of MTBE from River Water   总被引:1,自引:0,他引:1  
Through 1998, methyl tertiary-butyl ether (MTBE) was the most commonly used fuel oxygenate in Reno, Nevada. Winter-use of oxygenated gasolines is required in areas of the country that exceed carbon monoxide air quality standards. MTBE has not been detected in Reno’s raw water sources, but treatment alternatives must be assessed to fully prepare for possible contamination events. In this research, bench-scale studies using activated carbon and air stripping were conducted to evaluate the treatability of a high concentration of MTBE in Truckee River water, which is the primary surface supply for the Reno area. Results indicated that neither method appears practical for treating MTBE-laden water for one day at a 1.14×108?L/day (30 MGD) treatment plant. The capital costs estimated for full-scale application of these processes are approximately $5 million each. Estimated treatment costs for activated carbon and air stripping are approximately $0.043/L ($0.161/gal) and $0.047/L ($0.177/gal), respectively. Temporary closure of treatment facilities may be the best response to an accidental spill.  相似文献   

16.
A number of remedial technologies are based on multiphase extraction, the simultaneous removal of contaminated liquids and vapors from soil or rock through one or more wells subjected to a high vacuum. This technical note proposes an empirical model for predicting cumulative contaminant-mass removal by multiphase extraction as a function of remedial-system run time. Model calibration employs early-time mass-removal data.  相似文献   

17.
This study evaluated the removal of viable Cryptosporidium parvum oocysts and changes in zeta potential during alum coagulation and sedimentation. Experiments were designed to evaluate oocyst removal and oocyst zeta potential at three initial dissolved organic carbon (DOC) concentrations and a wide range of alum doses and coagulation pH values. The study showed that changes in the initial DOC concentration affected the zeta potential of Cryptosporidium parvum oocysts and the removal of oocysts. Oocysts did not appear to be removed by a charge neutralization mechanism under the conditions used in this research. Sweep flocculation appeared to be the primary removal mechanism at the lowest DOC concentration tested in this study. For the highest DOC concentration tested, optimal coagulation conditions for oocyst removal coincided with optimal coagulation conditions for natural organic matter (NOM) removal, suggesting that NOM played a key role in the interaction between oocysts and the aluminum hydroxide precipitate.  相似文献   

18.
This research demonstrated the feasibility of simultaneous biological nitrogen and phosphorous removal in a single tank membrane bioreactor without cycling of air and/or feed through operation at a low dissolved oxygen (DO) and a high biomass concentration. Chemical oxygen demand removal efficiency was more than 98% and total nitrogen removal efficiency was 55%. Seventy-five percent of the total nitrogen removal was through simultaneous nitrification–denitrification (SND) and 25% through assimilation into the biomass. Interestingly, more than 98% phosphorous was removed and microbiological analysis showed the presence of polyphosphate-accumulating organisms in the activated sludge. The operating mixed-liquor suspended solids was between 16 and 23?g/L. The optimum DO was found to be 0.7–0.8?mg/L.  相似文献   

19.
The performance of a down-flow hanging sponge (DHS) system was continuously evaluated for 1 year for enhancement of organic matter and nutrient removal in the treatment of presettled municipal wastewater. A pilot-scale DHS (24 L) was installed at a wastewater-treatment site and operated at an ambient temperature of 25°C. This paper reports on the results of a long-term monitoring of the system. The DHS system was operated at three different hydraulic retention times (HRTs), i.e., 6, 4, and 2 h. The available results showed that increasing the HRT significantly improved the removal of chemical oxygen demand (COD) fractions. The removal efficiencies of COD were 89, 80, and 56% at HRTs of 6, 4, and 2 h, respectively. Also, ammonia (NH4–N) concentration significantly decreased by increasing the HRT. Ammonia removal percentages of 99, 90, and 72% were achieved when the DHS system was operated at HRTs of 6, 4, and 2 h, respectively, but decreasing HRT exerted a slightly negative effect on the removal of total phosphorous. Scanning electron microscopy observation revealed no clogging of the sponge pores after 12 months of continuous operation. Accordingly, the results suggested that the proposed system may be a competitive solution for municipal wastewater treatment under variable conditions.  相似文献   

20.
The sorption of inorganic arsenic species (arsenite and arsenate) from aqueous solutions onto steel-mill waste and waste filter sand, under neutral conditions, was investigated in this study. Additionally, the steel-mill waste material was modified in order to minimize its deteriorating impact on the initial water quality and to meet the drinking water standards. The influence of contact time and initial arsenic concentration was investigated using batch system techniques. To evaluate the application for real groundwater treatment, the capacities of the obtained waste materials were further compared to those exhibited by commercial sorbents, which were examined under the same experimental conditions. Kinetic studies revealed that waste slag materials are the most efficient in arsenic removal, reaching equilibrium arsenic sorption capacities in the range 47.6–55.2?μg/g, while waste filter sand exhibited capacities of 25.4–29.8?μg/g (for an initial arsenic concentration Co = 0.5?mg/L). The higher iron content in the slag materials was considered to be responsible for the better removal efficiencies, and the specific arsenic removal efficiency was estimated to be 220?μgAs/gFe. The specific arsenic removal efficiency of the second active substance found in waste filter sand, manganese, was estimated to be 115?μgAs/gMn. Equilibrium studies revealed the occurrence of both chemisorption and physical sorption processes. All the waste materials exhibited higher performances for As(V). The highest maximum sorption capacity was obtained by waste iron slag: 4040?μg/g for As(V). The waste materials reached the arsenic removal capacities of the examined commercial materials, suggesting the feasibility of their application in real groundwater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号