首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern leukocyte removal filters have been developed after years of refinement in design. Current filters are composite filters in which synthetic microfiber material is prepared as a nonwoven web. The filter material may be surface modified to alter surface tension or charge to improve performance. The housing design promotes effective contact of blood with the filter material and decreases shear forces. The exact mechanisms by which these filters remove leukocytes from blood components are uncertain, but likely represent a combination of both physical and biological processes whose contributions to leukocyte removal are interdependent. Small-pore microfiber webs result in barrier phenomena that permit retention of individual cells and increase the total adsorptive area of the filter. Modifications in surface charge can increase or decrease cell attraction to the fibers. Optimum interfacial surface tensions between blood cells, plasma, and filter fibers not only permit effective blood flow through small fiber pores, but also facilitate cell contact with the material. Barrier retention is a common mechanism for all modern leukocyte-removal filters and applies to all leukocyte subtypes. Because barrier retention does not depend on cell viability, it is operative for cells of any age and will retain any nondeformable cell, including whole nuclei from lymphocytes or monocytes. Barrier retention is supplemented by retention by adhesion. RBCs, lymphocytes, monocytes, granulocytes, and platelets differ in their relative adhesiveness to filter fibers. Different adhesive mechanisms are used in filters designed for RBCs compared with filters designed for platelets. Although lymphocytes, monocytes, and granulocytes can adhere directly to filter fibers, the biological mechanisms underlying cell adhesion may differ for these cell types. These differences may depend on expression of cell adhesion molecules. In the case of filtration of fresh RBCs, platelet-leukocyte interaction seems to supplement other mechanisms of leukocyte retention. The interactions of cells with biomaterials is an area of important research for implantable medical devices, artificial organs, and orthopedic, vascular, and dental prosthetics. Research in these areas is likely to contribute to improved biomaterials for blood filters. Improved techniques for the preparation of hybrid polymers and new techniques for surface modification of existing polymers will increase the technical opportunities for the development of synthetic surfaces ideally designed for leukocyte removal. It is therefore likely that the performance of leukocyte-removal filters will continue to improve. The development of cost-effective leukocyte removal filters specifically designed for use during component preparation would permit leukocyte depletion of all cellular blood components.  相似文献   

2.
3.
The patient, a 61-year-old woman, received a blood transfusion at the age of 33 years. Weakness of the lower extremities developed at the age of 42 and the diagnosis of human T-lymphotropic virus type I (HTLV-I) associated myelopathy was made. Somatosensory evoked potential examination showed that the latency of P27 evoked by peroneal nerve stimulation was 44 msec. Lymphocytapheresis was performed 3 times with one-week intervals using a leukocyte removal filter. The muscle weakness began to improve on the second day after the second lymphocytapheresis and the sensory impairment began to improve on the third day after the third lymphocytapheresis. The delayed latency of P27 improved after the lymphocytapheresis. The effectiveness of lymphocytapheresis in this case suggests that lymphocytes are involved in the pathogenesis of HTLV-I associated myelopathy.  相似文献   

4.
BACKGROUND: Tepid blood (TB) cardioplegia combines the improved rheologic characteristics and the augmented oxygen and substrate delivery of blood cardioplegia with the advantages of moderate hypothermia. In addition, the intramyocardial distribution of continuous TB cardioplegia may also be better than intermittent cold crystalloid (CC) cardioplegia. We sought to compare the distribution of TB and CC cardioplegia at varying infusion pressures. METHODS: In situ, isolated canine hearts were randomized to antegrade, continuous TB (28 degrees C, n = 8) or intermittent CC (n = 8) cardioplegia infused at 50, 75, and 100 mm Hg. The regional distribution of cardioplegia at each pressure was measured by 15-microm colored microspheres. Cardioplegia distribution was measured from three areas each of the right ventricle (inflow, outflow, and apex) and the left ventricle (anterior, lateral, and posterior). Left ventricular samples were subdivided into subepicardial, midmyocardial, and subendocardial. RESULTS: Delivery of cardioplegia to all areas of the right and left ventricles showed a linear pressure-flow relationship over the range of pressures tested. Right ventricular distribution was two-thirds of that to the left ventricle, and left ventricular subepicardial distribution was approximately one half of subendocardial flow in both groups at all delivery pressures. However, the subendocardial to subepicardial ratio was significantly greater with TB cardioplegia than with CC cardioplegia. Transmural right ventricular cardioplegia flow was comparable in both groups. In contrast, left ventricular distribution of CC cardioplegia was greater than TB cardioplegia at all three pressures tested. CONCLUSIONS: The pressure-flow relationship in both CC and TB cardioplegia is linear in both the right and left ventricular myocardium over clinically applicable delivery pressures. The distribution of cardioplegia to the right ventricle is not altered by increased pressure.  相似文献   

5.
BACKGROUND: Cardiac troponin I (CTnI) has been shown to be a marker of myocardial injury. The aim of this study was to compare antegrade crystalloid cardioplegia with antegrade cold blood cardioplegia with warm reperfusion using CTnI release as the criteria for evaluating the adequacy of myocardial protection. METHODS AND RESULTS: Seventy patients were randomly assigned to receive crystalloid or blood cardioplegia. CTnI concentrations were measured in serial venous blood samples drawn just before cardiopulmonary bypass and after aortic unclamping at 6, 9, 12, and 24 hours and daily thereafter for 5 days. ANOVA with repeated measures was performed to test the effect of the type of cardioplegia on CTnI release. The total amount of CTnI released was higher in the crystalloid cardioplegia group than in the blood cardioplegia group (11.2 +/- 8.9 versus 7.8 +/- 8.6 micrograms, P < .02). CTnI concentration was significantly higher in the crystalloid group than in the blood group in the samples drawn at hours 9 and 12. Three patients in each group had ECG evidence of perioperative myocardial infarction. Eight patients in the crystalloid group and five patients in the blood group had CTnI evidence of perioperative myocardial infarction. CTnI release was significantly lower in patients requiring no electrical defibrillation after aortic unclamping. CONCLUSIONS: Cold blood cardioplegia followed by warm reperfusion is beneficial in an unselected group of patients with a preserved left ventricular function undergoing an elective first coronary artery bypass grafting. CTnI allowed the diagnosis of small perioperative necrotic myocardial areas. The need for electrical defibrillation after aortic unclamping was related to a higher release of CTnI. A further study is necessary to determine whether this technique was beneficial because of cold blood cardioplegia, warm reperfusion, or both.  相似文献   

6.
BACKGROUND: The ideal temperature for blood cardioplegia administration remains controversial. METHODS: Fifty-two patients who required elective myocardial revascularization were prospectively randomized to receive intermittent antegrade tepid (29 degrees C; group T, 25 patients) or cold (4 degrees C; group C, 27 patients) blood cardioplegia. RESULTS: The two cohorts were similar with respect to all preoperative and intraoperative variables. The mean septal temperature was higher in group T (T, 29.6 degrees +/- 1.1 degrees C versus 17.5 degrees +/- 3.0 degrees C; p < 0.0001). After reperfusion, group T exhibited significantly greater lactate and acid release despite similar levels of oxygen extraction (p < 0.05). The creatine kinase-MB isoenzyme release was significantly lower in group T (764 +/- 89 versus 1,120 +/- 141 U x h/L; p < 0.04). Hearts protected with tepid cardioplegia demonstrated significantly increased ejection fraction with volume loading, improvement in left ventricular function at 12 hours, and decreased need for postoperative inotropic support (p < 0.05). The frequency of ventricular defibrillation after cross-clamp removal was lower in this cohort (p < 0.05). There were no hospital deaths, and both groups had similar postoperative courses. CONCLUSIONS: Intermittent antegrade tepid blood cardioplegia is a safe and efficacious method of myocardial protection and demonstrates advantages when compared with cold blood cardioplegia in elective myocardial revascularization.  相似文献   

7.
8.
OBJECTIVE: Encouraging results on myocardial preconditioning in experimental models of infarction, stunning or prolonged ischemia raise the question whether preconditioning techniques may enhance conventional cardioplegic protection used for routine coronary surgery. METHODS: A prospective clinical trial was conducted to investigate the effect of additional ischemic normothermic preconditioning prior to cardioplegic arrest applying cold blood cardioplegia in patients scheduled for routine coronary surgery (3 vessel disease, left ventricular ejection fraction > 50%). Two cross clamp periods of 5 min with the hearts beating in sinus rhythm were applied followed by 10 min of reperfusion, each (n = 7, group I). Inducing moderate hypothermia cold blood cardioplegia was delivered antegradely. In control groups, cold intermittent blood cardioplegia (n = 7, group II) was used alone. Coronary sinus effluents were analyzed for release of creatine kinase (CK), CK-MB, lactate, and troponin T at 1, 3, 6, 9, and 12 h. In addition, postoperative catecholamine requirements were monitored. RESULTS: The procedure was tolerated well, and no perioperative myocardial infarction in any of the groups studied occurred. Concentrations of lactate tended to be higher in group I, but this difference was not significant. In addition, no significant differences for concentrations of CK, CK-MB, and troponin T were found. Following ischemic preconditioning an increased dosage of dopamine was required within the first 12 h postoperatively (group I: 2.63 +/- 1.44 microg/kg/min, group II: 0.89 +/- 1.06 microg/kg/min). CONCLUSIONS: Combining ischemic preconditioning and cardioplegic protection with cold blood cardioplegia does not appear to ameliorate myocardial protection when compared to cardioplegic protection applying cold blood cardioplegia alone. Inversely, contractile function seemed to be impaired when applying this protocol of ischemic preconditioning.  相似文献   

9.
The optimal temperature of blood cardioplegia remains controversial. Interstitial myocardial pH was monitored online with a probe that was inserted in the anterior wall of the left ventricle. Venous pH, lactate production, and creatine kinase and troponin T release were measured in coronary sinus blood obtained in 14 dogs after ischemic arrest periods of 5, 10, 20, and 40 minutes with warm (n = 7; mean myocardial temperature, 35 degrees +/- 2 degrees C) and cold (n = 7; mean myocardial temperature, 12 degrees +/- 1 degree C) blood cardioplegic protection. Blood cardioplegic solution was delivered at a rate of 100 mL/min during the 10 minutes between each ischemic arrest. The interstitial myocardial pH decreased significantly (p < 0.05) from 7.1 +/- 0.3 to 6.53 +/- 0.3 after ischemia in animals perfused with warm blood cardioplegia and from 7.04 +/- 0.3 to 6.64 +/- 0.1 in those receiving cold blood cardioplegic protection; however, the difference between the groups was not significant (p > 0.05). Lactate production and creatine kinase and troponin T release increased significantly after ischemia, but there was no difference in the changes between the warm and cold blood cardioplegia groups. In conclusion, ischemia caused significant changes in all variables measured, and these changes were directly proportional to the duration of ischemia. However, there was no significant difference (p > 0.05) in the myocardial metabolic changes between the warm and cold blood cardioplegia groups in terms of the duration of ischemic arrest studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have developed a blood cardioplegia delivery system for children. Essential points of a delivery system in pediatric cardiac surgery are (1) a small amount of priming volume of a delivery system, and (2) slow, steady infusion of a cardioplegic solution. We changed a heat exchanger to a smaller one for reduction of priming volume, and changed a roller pump tube to a smaller one for slow, steady infusion. Thus, priming volume of a delivery system has reduced from 180 to 100 ml, and we can infuse a cardioplegic solution at a steady rate less than 10 ml/min. Our clinical experience with this system suggests that this blood cardioplegia delivery system is useful for pediatric cardiac surgery.  相似文献   

11.
The spontaneous as well as mitogen-induced in vitro production of interleukin-6 (IL-6) was studied in cultures of peripheral blood mononuclear cells (PBMC) from 14 children with marginal protein-energy malnutrition, 43 children with definite protein-energy malnutrition and 38 eutrophic controls of similar age, sex, race and socioeconomical condition. PBMC were cultured without added mitogen or stimulated with either lipopolysaccharide (LPS) or phytohemagglutinin (PHA). After 48 h incubation, cell-free culture supernatants were collected and stored at -70 degrees C. The amount of IL-6 in the supernatants was determined by a specific bioassay based on the proliferation of B9 hybridoma cells using human rIL-6 as standard. The mean level of IL-6 was significantly increased in supernatants from nonstimulated PBMC cultures from definitely malnourished children as compared with that observed in those of the controls. Stimulation with either LPS or PHA induced a rise in cytokine bioactivity in the supernatants of PBMC cultures from the different nutritional groups tested. Interestingly, IL-6 was significantly increased in the supernatants of PHA-stimulated cultures from malnourished children as compared with those of the controls.  相似文献   

12.
Coenzyme Q10 (CoQ10, ubiquinone) has been shown to be protective against myocardial ischemia/reperfusion induced injury. The purpose of this study was to investigate the effect of CoQ10 added to cold cristalloid cardioplegia on hypothermic ischemia and normothermic reperfusion using an isolated working rat heart. Hearts (n = 6-9/group) from male Wistar rats were aerobically (37 degrees C) perfused (20 min) with bicarbonate buffer. This was followed by a 3-min infusion of St. Thomas' Hospital cardioplegic solution containing various concentrations of CoQ10 (0, 1, 3, 6, 12, and 58 mumol/L). Hearts were then subjected to 180 min of hypothermic (20 degrees C) global ischemia and 35 min of normothermic (37 degrees C) reperfusion (15 min Langendorff, 20 min working). Ventricular fibrillation (Vf) upon reperfusion was irreversible in the 12 and 58 mumol/ L CoQ10 groups (4/6 and 3/6, respectively). In the hearts which Vf upon reperfusion was not irreversible, the percent recovery of aortic flow (%AF) was 43.3 +/- 5.4% (n = 9) in the control group versus 31.6 +/- 7.7% (n = 6), 38.0 +/- 12.0% (n = 6), 27.2 +/- 6.9% (n = 6), 31.3% (n = 2), and 30.4 +/- 14.2% (n = 3) in the 1, 3, 6, 12, and 58 mumol/L CoQ10 groups, respectively. Creatine kinase leakage during Langendorff reperfusion tended to be greater in the 12 and 58 mumol/L CoQ10 groups than in the control group. Thus, CoQ10 in the cold cristalloid cardioplegic solution induced irreversible Vf upon reperfusion and failed to improve functional recoveries following hypothermic global ischemia.  相似文献   

13.
To determine the forms of cardiac troponin I (cTnI) circulating in the bloodstream of patients with acute myocardial infarction (AMI) and patients receiving a cardioplegia during heart surgery, we developed three immunoenzymatic sandwich assays. The first assay involves the combination of two monoclonal antibodies (mAbs) specific for human cTnI. The second assay involves the combination of a mAb specific for troponin C (TnC) and an anti-cTnI mAb. The third assay was a combination of a mAb specific for human cardiac troponin T (cTnT) and an anti-cTnI mAb. Fifteen serum samples from patients with AMI, 10 serum samples from patients receiving crystalloid cardioplegia during heart surgery, and 10 serum samples from patients receiving cold blood cardioplegia during heart surgery were assayed by the three two-site immunoassays. We confirmed that cTnI circulates not only in free form but also complexed with the other troponin components (TnC and cTnT). We showed that the predominant form in blood is the cTnI-TnC binary complex (IC). Free cTnI, the cTnI-cTnT binary complex, and the cTnT-cTnI-TnC ternary complex were seldom present, and when present, were in small quantities compared with the binary complex IC. Similar results were obtained in both patient populations studied. These observations are essential for the development of new immunoassays with improved clinical sensitivity and for the selection of an appropriate cTnI primary calibrator.  相似文献   

14.
Post-ischemic reperfusion phenomena were studied in two methods of myocardial protection: crystalloid cardioplegia (St Thomas n(o) 2) and cold blood cardioplegia (Buckherg) during cardiopulmonary bypass for human myocardial revascularisation. Myocardial protection was assessed on the course of hemodynamic parameters, reperfusion arrhythmias and biochemical analysis of the coronary flow after cross-clamp removal: creatine phosphokinase (CPK-MB) and nucleotide adenine metabolites (adenosine, inosine, hypoxanthine, xanthine and uric acid). The study was performed in two groups of 14 patients. Hemodynamic conditions were similar in both groups during reperfusion in order to avoid different coronary flow. Under these conditions, myocardial protection by cold blood cardioplegia reduced reperfusion arrhythmias, and resulted in a loss of CPK-MB release. Furthermore, cold blood cardioplegia provided protection of myocardial energy metabolism by reducing the loss of metabolites, purine bases and oxypurine bases into the coronary sinus. Our results also show that hypoxanthine is probably the final product of ATP degradation in human myocardial tissue.  相似文献   

15.
Despite a prolonged repetitive aortic cross-clamp time of 411 min, a patient who suffered a left ventricular rupture after undergoing mitral valve replacement following mitral valvuloplasty and Maze procedure recovered without any permanent residual left ventricular dysfunction. During the aortic cross-clamping we used tepid blood cardioplegia for myocardial protection. This case report serves to demonstrate the potential of tepid blood cardioplegia as an effective method of myocardial protection.  相似文献   

16.
17.
OBJECTIVE: Warm blood cardioplegia requires interruption by ischemic intervals to aid visualization. We evaluated the safety of repeated interruption of warm blood cardioplegia by normothermic ischemic periods of varying durations. METHODS: In three groups of isolated cross-perfused canine hearts, left ventricular function was measured before and for 2 hours of recovery after arrest, which comprised four 15-minute periods of cardioplegia alternating with three ischemic intervals of 15, 20, or 30 minutes (I15, I20, and I30). Metabolism was continuously measured by phosphorus 31-magnetic resonance spectroscopy. RESULTS: Adenosine triphosphate level fell progressively as ischemia was prolonged; after recovery, adenosine triphosphate was 99% +/- 6%, 90% +/- 1% (p = 0.0004 vs control), and 68% +/- 3% (p = 0.0002) of control levels in I15, I20, and I30, respectively. Intracellular acidosis with ischemia was most marked in I30. After recovery, left ventricular maximal systolic elastance at constant heart rate and coronary perfusion pressure was maintained in I15 but fell to 85% +/- 3% in I20, (p = 0.003) and to 65% +/- 6% (p = 0.003) of control values in I30, while relaxation (tau) was prolonged only in I30 (p = 0.007). CONCLUSIONS: Hearts recover fully after three 15-minutes periods of ischemia during warm blood cardioplegia, but deterioration, significant with 20-minute periods, is profound when the ischemic periods are lengthened to 30 minutes. This suggests that in the clinical setting warm cardioplegia can be safely interrupted for short intervals, but longer interruptions require caution.  相似文献   

18.
This study was undertaken to analyze the effect of diltiazem blood cardioplegia (D-BCP) in patients of valvular heart disease with severe left ventricular dysfunction (EF = 56.3%, FS = 26.0%, CI = 2.241/min/m3), they were satisfied with NYHA functional class 3 and 4, also cardiothoracic ratio over 65%. By negative choronotropic action of D, the heart rates in D added group tend to be less than those of D free group 4 to 16 hours postoperatively, although that may diminish the incidence of ventricular arrhythmia postoperatively. D-BCP improved better functional recovery (mPAWP-LVSWI relation) during the early postoperative period than those seen in preoperatively. The pulmonary vascular resistance index of D added group showed significantly lower levels than those in the preoperative period, 0 to 16 hours after surgery. Consequently, D-BCP might be safe and provide superior protection for severe valvular heart disease.  相似文献   

19.
The role of antimicroaggregational filters of Pall firm (Great Britain) with 40 micrometer pores diameter for the disorders of lungs function prophylaxis while hemotransfusion in patients during the operation conduction for gastrointestinal hemorrhage and in the early postoperative period was studied. Application of antimicroaggregational filters while hemotransfusion prevented the postoperative pneumonia occurrence caused by secondary protective effects, and the decrease of the donor's leucocytes entrance.  相似文献   

20.
BACKGROUND: The technique of intermittent antegrade warm blood cardioplegia (IAWBC) exposes the heart to brief periods of normothermic ischemia. This may impair endothelial function in coronary arteries. METHODS: Three cardioplegic technique were tested in porcine hearts arrested for 32 to 36 minutes and reperfused for 30 minutes: IAWBC, antegrade cold blood cardioplegia (ACBC), and antegrade cold crystalloid cardioplegia (ACCC). In the hearts arrested with IAWBC, three different intervals of ischemia were used: three 10-minute intervals (IAWBC1), two 15-minute intervals (IAWBC2), and one 30-minute interval (IAWBC3). Rings from the coronary arteries were used to evaluate in vitro the contractile responses to U46619 and the relaxant responses to bradykinin, A23187, and sodium nitroprusside. RESULTS: All six groups (treatment groups and control group) displayed similar responses to U46619 (30 nmol/L) and nitroprusside. In the IAWBC1, IAWBC2, AND ACBC groups, endothelium-dependent relaxations to bradykinin and A23187 were preserved compared with controls, whereas those of the ACCC and IAWBC3 groups were significantly impaired (bradykinin: control, 8.72 +/- 0.07; IAWBC1, 8.73 +/- 0.03; IAWBC2, 8.65 +/- 0.05; IAWBC3, 8.30 +/- 0.07 [p < 0.05]; ACBC, 8.50 +/- 0.03; ACCC, 8.25 +/- 0.09 [p < 0.05]; A23187: control, 7.07 +/- 0.08; IAWBC1, 7.07 +/- 0.06; IAWBC2, 7.04 +/- 0.03; IAWBC3, 6.64 +/- 0.01 [p < 0.05]; ACBC, 6.80 +/- 0.05; ACCC, 6.60 +/- 0.08 [p < 0.05]; nitroprusside: control, 6.19 +/- 0.1; IAWBC1, 6.19 +/- 0.07; IAWBC2, 6.03 +/- 0.03; IAWBC3, 6.08 +/- 0.05; ACBC, 6.04 +/- 0.2; ACCC, 6.05 +/- 0.03; all values are expressed as the negative logarithm of the concentration producing 50% of the maximal response). CONCLUSIONS: Myocardial preservation with IAWBC with ischemic intervals of 15 minutes or shorter does not alter the endothelium-dependent relaxation to bradykinin or A23187 in porcine coronary arteries, but these responses are significantly impaired by ACCC and IAWBC with an ischemic interval of 30 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号