首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

2.
Development of an ejector cooling system with thermal pumping effect   总被引:1,自引:1,他引:1  
This paper presents a feasibility study of an ejector cooling system (ECS) that utilizes a multi-function generator (MFG) to eliminate the mechanical pump. The MFG serves as both a pump and a vapor generator. The MFG is designed based on the pressure equilibration between high and low pressures through heating and cooling process. In this design, an ECS that contains no moving components and is entirely powered by heat can be practicable. A prototype using refrigerant R141b as working fluid was constructed and tested in the present study. The experimental results showed that the system coefficient of performance (COPo) was 0.218 and the cooling capacity was 0.786 kW at generating temperature (TG) 90 °C, condensing temperature (TC) 32.4 °C and evaporating temperature (TE) 8.2 °C. While taking into account the extra heat needed for the MFG operation, the total coefficient of performance (COPt) is 0.185. It is shown that a continuous operation for the generation of cooling effect in an ECS with MFG can be achieved. This cooling machine can be very reliable since there is no moving part.  相似文献   

3.
Three different schemes of metal hydride solid sorption devices for heat pumping and cooling applications are presented and compared based on theoretical evaluations. Key parameters obtained from experimental and simulation results from coupled metal hydride reaction beds have been used for the theoretical evaluation. The single (HS) and double stage (HD) devices show reasonable performances, but they require many moving parts. Using high performance reaction beds, e.g. a capillary tube bundle reaction bed, cycle times of about 5–10 min can be obtained with these devices. This corresponds to a specific power output of 100–200 W kg−1 (HS) or 150–300 W kg−1 (HD), referred to the total hydride inventory of the machine. The multi-hydride-thermal-wave (HW) system has a lower specific power output, but it offers significant advantages like modest hardware effort, low pumping power and a very wide operating temperature range.  相似文献   

4.
A detailed mathematical model of a compressor driven metal hydride (CDMH) cooling system is presented. The model takes into account the transient characteristics of the coupled metal hydride reactors with external fins, reciprocating compressor and conditioned space. The model can be used for predicting the system performance during the initial pull-down as well as the stable cycling periods. Results are obtained for a 1 kW capacity air conditioning system using optimized reactors packed with Zr0.9Ti0.1Cr0.55Fe1.45 hydride. The COP's obtained are in the range of 1.7–2.2 depending on operating conditions while the specific cooling power obtained is about 600 kJ kg alloy−1 h−1. It is shown that in order to make these systems commercially viable it is important to select suitable materials with fast reaction kinetics. Since, system performance parameters can be predicted more effectively, the model can be used for design of optimized systems.  相似文献   

5.
Thermal conductivity models of frozen soils were analyzed and compared with similar models developed for frozen foods. In total, eight thermal conductivity models and 54 model versions were tested against experimental data of 13 meat products in the temperature range from 0 to −40 °C. The model by deVries, with water+ice (wi) as the continuous phase, showed overall the best predictions. The use of wi leads generally to improved predictions in comparison to ice; water as the continuous phase is beneficial only to deVries model, mostly from −1 to −20 °C; fat is advantageous only to meats with high fat content. The results of this work suggest that the more sophisticated way of estimating the thermal conductivity for a disperse phase in the deVries model might be more appropriate than the use of basic multi-phase models (geometric mean, parallel, and series). Overall, relatively small differences in predictions were observed between the best model versions by deVries, Levy, Mascheroni, Maxwell or Gori as applied to frozen meats with low content of fat. These differences could also be generated by uncertainty in meat composition, temperature dependence of thermal conductivity of ice, measurement errors, and limitation of predictive models.  相似文献   

6.
This paper presents experimental data for the viscosity of solutions of refrigerant R600a (isobutane) with mineral compressor oils Azmol, Reniso WF 15A, and R245fa (1,1,1,3,3-pentafluoropropane) with polyolester compressor oil Planetelf ACD 100 FY on the saturation line. The experimental data were obtained for solution of R600a with mineral compressor oil Azmol in the temperature range from 294.7 to 338.1 K and the concentration range 0.04399 ≤ wR ≤ 0.3651, the solution of R600a with mineral compressor oil Reniso WF 15A at the temperatures from 285.8 to 348.4 K and the concentration range 0.03364 ≤ wR ≤ 0.2911, the solution of R245fa with polyolester compressor oil Planetelf ACD 100 FY at the temperatures from 309 to 348.2 and the concentration range 0.06390 ≤ wR ≤ 0.3845. The viscosity was measured using a rolling ball method. The method for prediction of the dynamic viscosity for refrigerant/oil solutions is reported.  相似文献   

7.
A novel cascading adsorption cooling cycle for refrigeration purposes is proposed in this paper. This cycle consists of two zeolite adsorbent beds and a silica gel adsorbent bed. The working refrigerant for the three adsorbers is water. The zeolite adsorbent bed is configured as the high temperature stage while the silica gel adsorbent bed acts as the low temperature stage. Both heat and mass recovery are carried out between the two zeolite adsorbent beds. In addition, heat is also exchanged between the zeolite adsorbent and the silica gel adsorbent beds. A lumped model is assumed for this cascading cycle. The COP for the base case is found to be 1.35, which is much higher than the COP of an intermittent cycle (about 0.5) and a two-bed combined heat and mass recovery cycle (about 0.8). However, its specific cooling power (SCP) of 42.7 W/kg is much lower than that of the intermittent cycle. The numerical results indicate that an optimal middle temperature exists for a prescribed driven temperature. The optimal COP increases with an increase in the driven temperature. However, when the driven temperature increases beyond 503 K, there is negligible change in the COP.  相似文献   

8.
In this paper, the performance of the solar-driven ejector refrigeration system with iso-butane (R600a) as the refrigerant is studied. The effects that both the operating conditions and the solar collector types have on the system's performance are also examined by dynamic simulation. The TRNSYS and EES simulation tools are used to model and analyze the performance of a solar-driven ejector refrigeration system. The whole system is modelled under the TRNSYS environment, but the model of the ejector refrigeration subsystem is developed in the Engineering Equations Solver (EES) program. A solar fraction of 75% is obtained when using the evacuated tube solar collector. In the very hot environment, the system requires relatively high generator temperature, thus a flat plate solar collector is not economically competitive because the high amount of auxiliary heat needed to boost up the generator temperature. The results from the simulation indicate that an efficient ejector system can only work in a region with decent solar radiation and where a sufficiently low condenser temperature can be kept. The average yearly system thermal ratio (STR) is about 0.22, the COP of the cooling subsystem is about 0.48, and the solar collector efficiency is about 0.47 at Te 15 °C, Tc 5 °C above the ambient temperature, evacuated collector area 50 m2 and hot storage tank volume 2 m3.  相似文献   

9.
This paper describes the experiment carried out to analyze the performance of a refrigeration system in cascade with ammonia and carbon dioxide as working fluids. The effect of operation parameters, such as the evaporating temperature of the low temperature cycle, the condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and superheat degree, on the system performance was investigated. Performance of the cascade system with NH3/CO2 was compared with that of two-stage NH3 system and single-stage NH3 system with or without economizer. It was found that the COP of the cascade system is the best among all the systems, when the evaporating temperature is below −40 °C. Also, the cascade system performance is greatly affected by evaporating temperature, condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and is only slightly sensitive to superheat degree. All the experimental results indicate that the NH3/CO2 cascade system is very competitive in low temperature applications.  相似文献   

10.
A numerical simulation is performed to examine the heat and fluid flow characteristics of the branching system in a single-phase parallel-flow heat exchanger (PFHE) and to obtain its optimal shape. The relative importance of the design parameters [injection angle of the working fluid (Θ), inlet shape and location (Yc), and height of the protruding flat tube (Yb)] is determined to decide the optimization sequence. The optimal geometric parameters are obtained as follows: Θ=−21°, Type A, Yc=0 and Yb=0. The heat transfer rate of the optimum model compared to that of the reference model is increased by about 55%. The optimal values of the parameters can be applicable to the Reynolds number ranging from 5000 to 20,000.  相似文献   

11.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

12.
The effects of the wall thickness of stainless steel heat exchanger tubes on the performance of adsorption machines, employing zeolite 4A coatings synthesized on metal heat exchanger tubes, are investigated. A recently developed mathematical model is used to determine the cycle durations when various wall thicknesses of the heat exchanger tubes as well as different zeolite layer thicknesses are utilized. For each case, the power and the COPcycle values of the system are estimated. In general, very high power and quite low COPcycle values are obtained when the proposed arrangement is utilized in the adsorption heat pumps. The zeolite layer thicknesses that may result in obtaining high COPcycle values are generally much higher than the optimum layer thickness value that maximizes the power and the utilization of layers thicker than the optimum value may lead to significant extensions in the cycle durations and hence to a decrease in the power obtained from the system. Decreasing the wall thickness of the heat exchanger tubes increases both the power and the COPcycle values when the optimum zeolite layer thickness for each wall thickness is taken into account. The possibility of such an enhancement will most probably be limited by the minimum wall thickness value that can actually be obtained by the available technology. The COP values of adsorption heat pumps may also be increased by using regenerative processes. Due to the generally low COP values obtained, the proposed arrangement seems especially suitable to be employed in adsorption machines utilizing energy sources of low economical value, such as waste heat. An optimum compromise between the COP value, which is closely related to the operating costs, and the power of the system should be provided, in case more valuable energy sources are utilized.  相似文献   

13.
An improved system of NH3–H2O–LiBr was proposed for overcoming the drawback of NH3–H2O absorption refrigeration system. The LiBr was added to NH3–H2O system anticipating a decrease in the content of water in the NH3–H2O–LiBr system. An equilibrium cell was used to measure thermal property of the ternary NH3–H2O–LiBr mixtures. The pressure–temperature data for their vapor–liquid equilibrium (VLE) data were measured at ten temperature points between 15–85 °C, and pressures up to 2 MPa. The LiBr concentration of the solution was chosen in the range of 5–60% of mass ratio of LiBr in pure water. The VLE for the NH3–H2O–LiBr ternary solution was measured statically. The experimental results show that the equilibrium pressures reduced by 30–50%, and the amount of component of water in the gas phase reduced greatly to 2.5% at T=70 °C. The experimental results predicted much better characteristics of the new ternary system than the NH3–H2O system for the applications.  相似文献   

14.
This paper presents an overview of the flow boiling heat transfer characteristics and the special thermo-physical properties of CO2 at low temperatures (down to −30 °C). Subsequently, the boiling heat transfer of CO2 at low temperatures is experimentally investigated in a horizontal tube with inner diameter of 4.57 mm. Due to the large surface tension, the boiling heat transfer coefficient of CO2 is found to be much lower at low temperatures but it increases with vapour quality (until dryout), which is contrary to the trend at high temperatures around 0 °C. None of the empirical correlations from open literature were able to predict the boiling heat transfer coefficient for CO2 in good agreement with the experimental data, suggesting the need for further research in this area.  相似文献   

15.
The paper is aimed to develop a high performance rotary solid desiccant cooling system using a novel compound desiccant wheel (DW). The unique feature of the desiccant wheel is that it can work well under a lower regeneration temperature and have a higher dehumidification capacity due to the contribution of the new compound desiccant materials. Experimental results indicate that the novel desiccant wheel under practical operation can remove more moisture from the process air by about 20–40% over the desiccant wheel employing regular silica gel. A mathematical model that is used to predict the system performance has been validated with the test results. By integrating the desiccant wheel with evaporative cooling, heat recovery and heating for regeneration sections, a solid desiccant cooling system can be formed. Simulation results show that because of the use of the new compound desiccant, the desiccant cooling system can work under much lower regeneration temperature and have a relative high COP, thus low grade thermal energy resources, such as solar energy, waste heat, etc., can be efficiently utilized to drive such a cooling cycle.  相似文献   

16.
The mechanical properties of solid foods have not been extensively studied. This is due to the fact that most foods behave as viscous fluids or viscoelastic “solids”. In the case of freezing of foods or by considering solid foods (i.e. chocolate), food can be considered as a solid system. This paper presents results obtained with Tylose® (a model food made of a methyl cellulose gel – 74% water content) and chocolate. The Young's modulus, the Poisson ratio, the bulk modulus and the coefficient of thermal expansions have been determined using specific procedures. These results can be of interest to model the thermomechanical behavior of foods undergoing freezing.  相似文献   

17.
The present study is aimed to investigate the oscillation effects on the frost formation and the liquid droplet solidification on a cold plate in atmospheric air flow. A microscopic image system is used to observe the structure of the frost layer, and an electrodynamic shaker is designed to oscillate the cold plate at various amplitudes (D) and frequencies (f). The physical parameters considered in this study include the velocity, temperature, and relative humidity of the air (V, Ta, and φ), as well as the surface temperature of the cold plate (Tw), which is varied by adjusting the cooling refrigerant temperature (Tref). The ranges of the physical variables considered in this study are: 2V8 m/s, 18Ta30 °C, 40%φ70%, −18Tref (and Tw)0 °C, 40D100 μm, and 100f200 Hz.  相似文献   

18.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

19.
The performance of a solid sorption icemaker is investigated. CaCl2/activated carbon was used as compound adsorbent and ammonia was employed as adsorbate. The influence of operating conditions (cooling water temperature, mass recovery and heat pipe heat recovery, etc.) on the mass of ice, SCP (specific cooling power) and COP (coefficient of performance) was experimentally assessed. At the desorption temperature of 126 °C, cooling water temperature of 22 °C, ice produced temperature of −7.5 °C, 40 s of mass recovery and 2 min of heat pipe heat recovery, the mass of ice, SCP and COP values are 17.6 kg/h, 369.1 W/kg and 0.2, respectively.  相似文献   

20.
This study presents a new mathematical model of heat and mass transfer processes in evaporative condensers. The model consists of four ordinary differential equations with their boundary conditions and some associated algebraic equations. The model was formulated for steady-state heat and mass transfer conditions. A simulation computer program based on the model was written. It was devised for heat calculations in condensers built from bare tubes. The quality of the model was calculated by comparing the results obtained by running the program with experimental results achieved by other authors. The computed results show a good degree of conformity with experimental results. The differences are less than 20% (but in one case, 30%). The computer program may be used to determine heat performance of evaporative condensers of horizontal in-line and staggered bundle systems (if Sq > 2dz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号