首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Patients with renal failure are characterized by impaired insulin-mediated glucose uptake. Insulin plays a major role in the maintenance of phosphate homeostasis but it remains to be determined whether in uraemia insulin-dependent renal and extrarenal phosphate disposal is also affected. METHODS: The effect of hyperinsulinaemia on serum concentrations of phosphate, ionized calcium and intact PTH as well as renal excretion of calcium and phosphate was studied under euglycaemic conditions (glucose clamp technique) in patients with advanced renal failure and in healthy subjects. Fifteen patients with renal failure (mean serum creatinine 917 micromol/l) and 12 control subjects were included. All subjects underwent a 3-h euglycaemic clamp with constant infusion of insulin (50 mU/m2/min) following a priming bolus. The urine was collected for 3 h before and throughout the clamp. RESULTS: The tissue insulin sensitivity (M/I) was lower in patients with renal failure than in control subjects (5.3+/-2.4 vs 6.7+/-1.8mg/kg/min per mU/ml, P= 0.001) but the phosphate lowering action of insulin was larger in patients with renal failure than in control subjects. Urinary calcium excretion increased (P < 0.05) and phosphate excretion did not change during the clamp in both groups. Despite a decrease of serum ionized calcium in the group of patients with renal failure and no change in the control group, plasma PTH fell significantly in both groups but this effect was still significant after 180 min only in the renal failure group. A significant correlation was observed between changes in serum phosphate and PTH induced by hyperinsulinaemia (r = 0.48, P < 0.01 ) CONCLUSIONS: Phosphate-lowering effect of insulin is well preserved in severe renal failure despite the resistance to insulin-stimulated glucose uptake. The decrease of serum PTH observed during hyperinsulinaemia appears to be independent of serum ionized calcium.  相似文献   

2.
Insulin resistance is found in association with obesity, non-insulin-dependent diabetes mellitus, and essential hypertension, which are all risk factors for atherosclerotic cardiovascular disease. Furthermore, hyperinsulinemia has been reported in familial combined hyperlipoproteinemia and endogenous hypertriglyceridemia. Finally, relatively high serum triglyceride and low high-density lipoprotein (HDL) cholesterol concentrations invariably accompany hyperinsulinemia. Whether insulin sensitivity is affected by the isolated presence of high levels of serum low-density lipoprotein (LDL) cholesterol has not been clearly established. We studied 13 subjects with heterozygous familial hypercholesterolemia (FHC) and 15 normocholesterolemic subjects selected to be free of any other known cause of insulin resistance. Thus FHC patients and controls had normal body weight and fat distribution, glucose tolerance, blood pressure, and serum triglyceride and HDL cholesterol concentrations, but were completely separated on plasma LDL cholesterol concentrations (6.05 +/- 0.38 v 3.27 +/- 0.15 mmol/L, P < .0001). Fasting plasma levels of glucose, insulin, free fatty acids (FFA), and potassium and fasting rates of net carbohydrate and lipid oxidation were superimposable in the two study groups. During a 2-hour euglycemic (approximately 5 mmol/L) hyperinsulinemic (approximately 340 pmol/L) clamp, whole-body glucose disposal rates averaged 30.4 +/- 2.3 and 31.1 +/- 3.0 mumol.kg-1 x min-1 in FHC and control subjects, respectively (P = 0.88). The ability of exogenous hyperinsulinemia to stimulate carbohydrate oxidation and energy expenditure and suppress lipid oxidation and plasma FFA and potassium levels was equivalent in FHC and control subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of methyltestosterone on insulin secretion and sensitivity in women   总被引:2,自引:0,他引:2  
The frequent coexistence of hyperandrogenism and insulin resistance is well established; however, whether a cause and effect relationship exists remains to be established. In this study we tested the hypothesis that short-term androgen administered to women would induce insulin resistance. To test this hypothesis, regularly menstruating, nonobese women were studied before and during methyltestosterone administration (5 mg tid for 10-12 days) by the hyperglycemic (n=8) and euglycemic, hyperinsulinemic (n=7) clamp techniques. Short-term methyltestosterone administration had no significant effects on the fasting levels of glucose, insulin, c-peptide, glucagon, or glucose turnover. During the hyperglycemic clamp studies, the mean glucose level during the final hour was 203+/-2 and 201+/-1 mg/dL in the methyltestosterone and control studies, respectively. The insulin response to this hyperglycemic challenge was slightly but not significantly greater during methyltestosterone treatment (first phase 59+/-8 vs. 50+/-8 microU/mL in controls; second phase 74+/-9 vs. 67+/-9 microU/mL in controls; total insulin response 133+/-16 vs. 117+/-15 microU/mL in controls). In spite of this, glucose uptake was reduced from the control study value of 10.96+/-1.11 to 7.3+/-0.70 mg/kg/min by methyltestosterone (P < 0.05). The ratio of glucose uptake per unit of insulin was also significantly reduced from a control study value of 14.3+/-1.4 to 9.4+/-1.3 mg/kg/min per microU/mL x 100 during methyltestosterone administration. In the euglycemic hyperinsulinemic clamp studies, insulin was infused at rates of 0.25 and 1.0 mU/kg/min to achieve insulin levels of approximately 25 and 68 microU/mL, respectively. During low-dose insulin infusion, rates of endogenous hepatic glucose production were equivalently suppressed from basal values of 2.37+/-0.29 and 2.40+/-0.27 mg/kg/min to 0.88+/-0.25 and 0.77+/-0.26 mg/kg/min in the methyltestesterone and control studies respectively. Whole body glucose uptake during low-dose insulin infusion was minimally affected. During the high-dose insulin infusion, endogenous hepatic glucose production was nearly totally suppressed in both groups. However, whole body glucose uptake was reduced from the control value of 6.11+/-0.49 mg/kg/min to 4.93+/-0.44 mg/kg/min during methyltestosterone administration (P < 0.05). Our data demonstrate that androgen excess leads to the development of insulin resistance during both hyperglycemic and euglycemic hyperinsulinemia. These findings provide direct evidence for a relationship between hyperandrogenemia and insulin resistance, and its associated risk factors for cardiovascular disease.  相似文献   

4.
The existence of insulin feedback inhibition is a controversial issue. The present study adopted a novel approach to determine whether insulin feedback inhibition exists in vivo during physiologic hyperinsulinemia and if it could contribute to enhanced insulin secretion in obesity. Serial plasma insulin and C-peptide levels were determined during a basal state and a hyperinsulinemic clamp (287 pmol/min/m2) and following discontinuation of the insulin infusion under euglycemic conditions. Insulin secretion rates were derived from plasma C-peptide levels and individual C-peptide kinetics using a two-compartment model. Eight non-obese and nine obese men were recruited for the studies, which were performed in random order. Men with significant variations in glucose levels during hyperinsulinemia were excluded from the analysis. Plasma glucose levels were similar between the non-obese and obese groups during all phases of the study, and similar plasma insulin levels were achieved in both groups during euglycemic hyperinsulinemia. In obese men, C-peptide levels were significantly greater compared with non-obese men during euglycemic hyperinsulinemia (P < .05). However, neither the non-obese nor the obese group demonstrated significant suppression of insulin secretion rates during euglycemic hyperinsulinemia. Expressing the data in absolute terms or as a percent of basal did not alter the results. Moreover, there was no significant change between the non-obese and the obese group during the rapid onset and cessation of hyperinsulinemia. Under euglycemic conditions, physiologic hyperinsulinemia does not induce suppression of endogenous insulin secretion in non-obese or obese men.  相似文献   

5.
Seven non-insulin-dependent diabetes mellitus (NIDDM) patients participated in three clamp studies performed with [3-3H]- and [U-14C]glucose and indirect calorimetry: study I, euglycemic (5.2 +/- 0.1 mM) insulin (269 +/- 39 pM) clamp; study II, hyperglycemic (14.9 +/- 1.2 mM) insulin (259 +/- 19 pM) clamp; study III, euglycemic (5.5 +/- 0.3 mM) hyperinsulinemic (1650 +/- 529 pM) clamp. Seven control subjects received a euglycemic (5.1 +/- 0.2 mM) insulin (258 +/- 24 pM) clamp. Glycolysis and glucose oxidation were quantitated from the rate of appearance of 3H2O and 14CO2; glycogen synthesis was calculated as the difference between body glucose disposal and glycolysis. In study I, glucose uptake was decreased by 54% in NIDDM vs. controls. Glycolysis, glycogen synthesis, and glucose oxidation were reduced in NIDDM patients (P < 0.05-0.001). Nonoxidative glycolysis and lipid oxidation were higher. In studies II and III, glucose uptake in NIDDM was equal to controls (40.7 +/- 2.1 and 40.7 +/- 1.7 mumol/min.kg fat-free mass, respectively). In study II, glycolysis, but not glucose oxidation, was normal (P < 0.01 vs. controls). Nonoxidative glycolysis remained higher (P < 0.05). Glycogen deposition increased (P < 0.05 vs. study I), and lipid oxidation remained higher (P < 0.01). In study III, hyperinsulinemia normalized glycogen formation, glycolysis, and lipid oxidation but did not normalize the elevated nonoxidative glycolysis or the decreased glucose oxidation. Lipid oxidation and glycolysis (r = -0.65; P < 0.01), and glucose oxidation (r = -0.75; P < 0.01) were inversely correlated. In conclusion, in NIDDM: (a) insulin resistance involves glycolysis, glycogen synthesis, and glucose oxidation; (b) hyperglycemia and hyperinsulinemia can normalize total body glucose uptake; (c) marked hyperinsulinemia normalizes glycogen synthesis and total flux through glycolysis, but does not restore a normal distribution between oxidation and nonoxidative glycolysis; (d) hyperglycemia cannot overcome the defects in glucose oxidation and nonoxidative glycolysis; (e) lipid oxidation is elevated and is suppressed only with hyperinsulinemia.  相似文献   

6.
Despite recent interest in the therapeutic potential of recombinant human insulin-like growth factor-I (rhIGF-I) in the treatment of diabetes mellitus, its mechanism of action is still not defined. We have studied the effects of low-dose bolus subcutaneous rhIGF-I (40 microg/kg and 20 microg/kg) on insulin sensitivity, growth hormone (GH) and glucagon levels in seven young adults with insulin-dependent diabetes mellitus (IDDM) using a randomized double-blind placebo-controlled crossover study design. Each was subjected to a euglycemic clamp (5 mmol/L) protocol consisting of a variable-rate insulin infusion clamp (6:00 PM to 8:00 AM) followed by a two-dose hyperinsulinemic clamp (insulin infusion of 0.75 mU x kg(-1) x min(-1) from 8 to 10 AM and 1.5 mU x kg(-1) x min(-1) from 10 AM to 12 noon) incorporating [6,6 2H2]glucose tracer for determination of glucose production/utilization rates. Following rhIGF-I administration, the serum IGF-I level (mean +/- SEM) increased (40 microg/kg, 655 +/- 90 ng/mL, P < .001; 20 microg/kg, 472 +/- 67 ng/mL, P < .001; placebo, 258 +/- 51 ng/mL). Dose-related reductions in insulin were observed during the period of steady-state euglycemia (1 AM to 8 AM) (40 microg/kg, 48 +/- 5 pmol/L, P = .01; 20 microg/kg, 58 +/- 8 pmol/L, P = .03; placebo, 72 +/- 8 pmol/L). The mean overnight GH level (40 microg/kg, 9.1 +/- 1.4 mU/L, P = .04; 20 microg/kg, 9.6 +/- 2.0 mU/L, P = .12; placebo, 11.3 +/- 1.7 mU/L) and GH pulse amplitude (40 microg/kg, 18.8 +/- 2.9 mU/L, P = .04; 20 microg/kg, 17.0 +/- 3.4 mU/L, P > .05; placebo, 23.0 +/- 3.7 mU/L) were also reduced. No differences in glucagon, IGF binding protein-1 (IGFBP-1), acetoacetate, or beta-hydroxybutyrate levels were found. During the hyperinsulinemic clamp conditions, no differences in glucose utilization were noted, whereas hepatic glucose production was reduced by rhIGF-I 40 microg/kg (P = .05). Our data demonstrate that in subjects with IDDM, low-dose subcutaneous rhIGF-I leads to a dose-dependent reduction in the insulin level for euglycemia overnight that parallels the decrease in overnight GH levels, but glucagon and IGFBP-1 levels remain unchanged. The decreases in hepatic glucose production during the hyperinsulinemic clamp study observed the following day are likely related to GH suppression, although a direct effect by rhIGF-I cannot be entirely discounted.  相似文献   

7.
OBJECTIVE: To determine the effect of a continuous insulin infusion on protein and glucose metabolism in extremely low birth weight (ELBW) infants. STUDY DESIGN: We measured the rate of appearance (Ra) of the essential amino acids leucine and phenylalanine (reflecting proteolysis), utilization of phenylalanine for protein synthesis, and glucose Ra using stable isotope tracers during a basal infusion of glucose (6 mg/kg/min) and in response to a continuous infusion of insulin (0.05 U/kg/hr) by means of the euglycemic hyperinsulinemic clamp technique. Four clinically stable, euglycemic ELBW infants (26 +/- 0 weeks' gestation, 894 +/- 44 gm birth weight, 2.8 +/- 0.8 days of age) were studied. RESULTS: In response to a greater than tenfold increase in insulin concentration (from 7 +/- 2 to 79 +/- 13 microU/ml), there was a 20% decrease in leucine Ra (Basal: 272 +/- 27 mumol/kg/hr; Insulin: 226 +/- 29 mumol/kg/hr; p < 0.01) and in phenylalanine Ra (Basal: 91 +/- 5 mumol/kg/hr; Insulin: 72 +/- 2 mumol/kg/hr; p < 0.05). Use of phenylalanine for protein synthesis also decreased by a similar magnitude (Basal: 77 +/- 4 mumol/kg/hr; Insulin: 62 +/- 1 mumol/kg/hr; p < 0.05). Glucose utilization doubled (from 8 +/- 0.9 to 15.7 +/- 1.1 mg/kg/min; p = 0.0003) and plasma lactate concentrations tripled (from 2.1 +/- 0.5 to 5.7 +/- 1.0 mmol/L; p < 0.05) during the insulin infusion. CONCLUSIONS: During an infusion of glucose alone, pharmacologic concentrations of insulin in ELBW infants produced no net protein anabolic effect. Furthermore, euglycemic hyperinsulinemia was accompanied by development of significant metabolic acidosis.  相似文献   

8.
The effect of metformin therapy on glucose metabolism was examined in eight overweight newly presenting untreated type II diabetic patients (five males, three females). Patients were treated for 12 weeks with either metformin (850 mg x 3) or matching placebo using a double-blind crossover study design; patients were studied at presentation and at the end of each treatment period. Insulin action was assessed by measuring activation of skeletal muscle glycogen synthase (GS) before and during a 4-hour hyperinsulinemic euglycemic clamp (100 mU.kg-1 x h-1). Metformin therapy was associated with a significant decrease in fasting blood glucose (6.8 +/- 0.6 v 8.3 +/- 0.9 mmol.L-1, P < .01) and glycosylated hemoglobin ([HbA1] 7.7% +/- 0.4% v 8.5% +/- 0.5%, P < .01) levels. Fasting hepatic glucose production (HGP) was also significantly decreased following metformin therapy (1.98 +/- 0.13 v 2.41 +/- 0.20 mg.kg-1 x min-1, P < .02), whereas fasting insulin and C-peptide concentrations remained unaltered. The decrease in basal HGP correlated closely with the decrease in fasting blood glucose concentration (r = .92, P < .001). Insulin-stimulated glucose uptake was assessed using the hyperinsulinemic euglycemic clamp technique and was increased post-metformin (3.8 +/- 0.6 v 3.1 +/- 0.7 mg.kg-1 x min-1, P < .05). This was primarily the result of increased nonoxidative glucose metabolism (1.1 +/- 0.6 v 0.4 +/- 0.6 mg.kg-1 x min-1, P < .05); oxidative glucose metabolism did not change. Metformin had no measurable effect on insulin activation of skeletal muscle GS, the rate-limiting enzyme controlling muscle glucose storage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Metabolic indicators of glucose and lipid metabolism, i.e. glucose turnover, insulin concentration in plasma, insulin clearance, concentrations of non-esterified fatty acids (NEFA), glycerol and potassium were investigated in nine ewes during three reproductive states in order to examine their importance for development of subclinical ketosis. The increase of insulin in plasma was measured after a continuous 60 min intravenous infusion of glucose (4.9 mmol.min-1). Turnover of glucose and insulin clearance were quantified during a combined euglycemic, hyperinsulinemic clamp. Insulin was consecutively infused in doses of 5 and 10 mU.kg-1.min-1 for about 2 1/2 hours, each. Plasma glucose concentration was adjusted to 5.3 to 5.8 mmol.l-1. The experiments were carried out during non-pregnancy and non-lactation, 4 weeks to 3 days before lambing and 3 to 4 weeks after lambing, each during normo- and hypocalcemia. Hypocalcemia (0.9 to 1.0 mmol Ca2+.l-1) was induced by continuous i.v. infusion of a 5% Na-EDTA solution. Infusion rate was continuously adjusted. The glucose induced increase in plasma insulin concentration was significantly lower during late pregnancy compared to peak lactation and non-pregnancy (46.3, 62.4 and 128 mU.l-1, respectively). The insulin clearance during a hyperinsulinemic clamp with 5 mU.kg-1.min-1 was significantly less during late pregnancy compared to peak lactation and non-pregnancy (3.7, 6.0, 4.8 ml.kg-1.min-1, respectively). The concentrations of NEFA and glycerol in plasma during the infusion of 5 mU insulin.kg-1.min-1 were significantly higher during late pregnancy than during non-pregnancy (NEFA: 0.41, 0.04 mmol.l-1; glycerol: 96, 29 mumol.l-1, respectively). The results showed that insulin responsiveness was significantly reduced in sheep during late pregnancy. The insulin-mediated uptake of glucose by muscle and fat tissues and the insulin-mediated inhibition of lipolysis were significantly reduced during late pregnancy compared to non-pregnancy and lactation. The diminished responsiveness of target tissue towards insulin during late pregnancy predisposed the animals for development of subclinical ketosis. Hypocalcemia exaggerated this situation by its inhibitory effect on hepatic gluconeogenesis and by enhancing insulin resistance of target tissues. The factors which are responsible for the altered responsiveness of target tissues towards insulin during late pregnancy are yet unknown. The potassium concentration in plasma showed a proportional increase with increase of the energy deficit of the target tissues. This effect could have been exerted by a decrease in cellular concentration of ATP and a concomitant reduction of the activity of Na(+)-K(+)-ATPase. The indicators of glucose and lipid metabolism which were examined in this study showed marked individual variation, particularly during late pregnancy. The marked changes of these indicators with reproductive stages as well as their great variation between individual sheep support the assumption that they are of significance for the development of pregnancy toxemia in sheep.  相似文献   

10.
Insulin resistance and hyperinsulinemia have been linked with essential hypertension. Age-associated increases in glucose intolerance and hypertension are also well established. To clarify the influence of aging on the insulin sensitivity, euglycemic hyperinsulinemic glucose clamp technique was carried out in 41 normotensive subjects and 42 patients with essential hypertension. The subjects of these groups were divided into two subgroups: young (< 40 years old) and middle-elderly (> or = 40 years old). Insulin sensitivity was assessed as M-value, the rate at which glucose must be infused to maintain a basal blood glucose level. In normotensive subjects, the young subgroup had a significantly higher M-value than did the middle-elderly subgroup. There was a significant negative correlation between age and M-value in normotensive subjects. On the other hand, there was no significant difference in M-value between the young and middle-elderly subgroups in the patients with essential hypertension. The age did not correlate with M-value in the hypertensive group. The normotensive subjects showed a significantly lower M-value than the hypertensive patients in the young group, but not in the middle-elderly group. These results indicate that 1) insulin sensitivity declines with age in normotensive subjects and that 2) insulin sensitivity is already diminished in the early stage of hypertension, and no further decrease in insulin sensitivity occurs with aging in essential hypertensive patients.  相似文献   

11.
Plasminogen activator inhibitor-1 (PAI-1) is related to insulin resistance and several components of the insulin resistance syndrome, and PAI-1 levels are elevated in subjects with non-insulin-dependent diabetes mellitus. Many Pima Indians are obese, insulin-resistant, and hyperinsulinemic, and they have high rates of diabetes but a low risk of ischemic heart disease. In contrast to whites and Asians, PAI-1 activity is similar between nondiabetic and diabetic Pima Indians. We therefore examined the association of PAI-1 with hepatic and peripheral insulin action measured using the hyperinsulinemic-euglycemic clamp. To investigate if insulin per se has any effect on PAI-1 in vivo, we also assessed the effects of endogenous (during a 75-g oral glucose load) and exogenous (during hyperinsulinemic clamp) insulin on PAI-1 antigen. Twenty-one (14 men and seven women; mean age, 26.3 +/- 4.8 years) Pima Indians underwent a 75-g oral glucose tolerance test (OGTT) and a sequential hyperinsulinemic-euglycemic clamp. Peripheral insulin action was measured as absolute glucose uptake (M value) and normalized to estimated metabolic body size (EMBS). Hepatic insulin action was measured as percent suppression of basal hepatic glucose output during hyperinsulinemia. PAI-1 antigen was determined using a two-site enzyme-linked immunosorbent assay that detects only free PAI-1. PAI-1 antigen concentrations were significantly related to body mass index ([BMI] rs = .54, P = .012), waist (rs=.52, P=.016) and thigh (rs=.63, P=.002) circumference, and fasting plasma insulin concentration (rs=.59, P=.004). PAI-1 antigen concentrations were not significantly associated with peripheral glucose uptake (M value) during either low-dose (rs= -.01, P=NS) or high-dose (rs= -.11, P=NS) insulin infusion. PAI-1 antigen was negatively correlated with basal hepatic glucose output (rs= -.57, P=.013) and percent suppression of hepatic glucose output during hyperinsulinemia (rs= -.69, P=.005). However, this relationship was largely due to the confounding effects of BMI, waist and thigh girth, fasting insulin, and 2-hour postload glucose concentrations, and was not significant when controlled for these variables (partial rs= -.30, P=NS). There was no significant relationship of PAI-1 antigen concentration with glucose storage or glucose oxidation. Despite a threefold increase in plasma insulin concentrations during the OGTT, there were no significant changes in PAI-1 antigen concentrations (median, 57, 61, 55, and 44 ng/mL at 0, 60, 120, and 180 minutes, respectively; P=NS by ANOVA). During the hyperinsulinemic clamp, mean plasma insulin concentrations at the end of low-dose (240 pmol/m2/min) and high-dose (2,400 pmol/m2/min) infusions were 1,005 and 14,230 pmol/L, respectively. However, PAI-1 antigen concentrations at the end of low-dose and high-dose insulin infusions were similar to those at baseline (median, 63, 43, and 58 ng/mL, respectively; P=NS by ANOVA). PAI-1 antigen in Pima Indians is related to several components of the insulin resistance syndrome. However, direct measurement of insulin resistance indicates that hepatic but not peripheral insulin resistance is related to PAI-1 antigen. Neither endogenous nor exogenous hyperinsulinemia for short periods had any significant effect on PAI-1 antigen concentrations. Short-term hyperinsulinemia is unlikely to be an important regulator of PAI-1 in Pima Indians. The relationship of PAI-1 antigen to hepatic insulin resistance is largely dependent on the relationship of PAI-1 to indices of obesity and fasting insulin concentrations.  相似文献   

12.
OBJECTIVES: To assess the effects of a vasodilatory beta-adrenoceptor blocker, nipradilol, and a long-acting Ca channel blocker, barnidipine, on insulin sensitivity. DESIGN: Insulin sensitivity was determined using a euglycemic hyperinsulinemic clamp technique before and after a 12-week treatment period in eighteen patients with essential hypertension. RESULTS: Both drugs decreased blood pressure without affecting any serum parameters of glucose and lipid metabolism. Nipradilol significantly augmented glucose infusion rate (GIR) from 3.11+/-0.28 to 4.69+/-0.57mg/kg/min (p=0.027). Barnidipine also increased GIR from 3.91+/-0.43 to 5.29+/-0.43 mg/kg/min (p=0.028). Plasma norepinephrine concentrations significantly increased with barnidipine treatment, while nipradilol had no effect on plasma norepinephrine levels. No adverse events were reported during the study. CONCLUSIONS: These results suggest that vasodilatory beta-blockers such as nipradilol and long-acting Ca channel blockers such as barnidipine may be useful in the treatment of insulin resistant hypertensive patients.  相似文献   

13.
This study was undertaken to investigate the changes in obesity (OB) gene expression and production of leptin in response to insulin in vitro and in vivo under euglycemic and hyperglycemic conditions in humans. Three protocols were used: 1) euglycemic clamp with insulin infusion rates at 40, 120, 300, and 1,200 mU / m / min carried out for up to 5 h performed in 16 normal lean individuals, 30 obese individuals, and 31 patients with NIDDM; 2) 64-to 72-h hyperglycemic (glucose 12.6 mmol/l) clamp performed on 5 lean individuals; 3) long-term (96-h) primary culture of isolated abdominal adipocytes in the presence and absence of 100 nmol/l insulin. Short-term hyperinsulinemia in the range of 80 to > 10,000 microU/ml had no effect on circulating levels of leptin. During the prolonged hyperglycemic clamp, a rise in leptin was observed during the last 24 h of the study (P < 0.001). In the presence of insulin in vitro, OB gene expression increased at 72 h (P < 0.01), followed by an increase in leptin released to the medium (P < 0.001). In summary, insulin does not stimulate leptin production acutely; however, a long-term effect of insulin on leptin production could be demonstrated both in vivo and in vitro. These data suggest that insulin regulates OB gene expression and leptin production indirectly, probably through its trophic effect on adipocytes.  相似文献   

14.
OBJECTIVE: To assess fully the vasodilatory and sodium-retaining effects of insulin. DESIGN: Prospective physiologic study using a dose-response protocol. SETTING: Clinical investigation unit of a tertiary referral hospital. PARTICIPANTS: Six normal, healthy men. INTERVENTIONS: Subjects were given increasing doses of insulin intravenously from 10 to 1200 mU/m2 per minute, using the euglycemic "clamp" technique. OUTCOME MEASURES: Urinary sodium excretion, systemic and renal hemodynamics, plasma norepinephrine levels and forearm blood flow after each dose. RESULTS: Low doses of insulin (up to 20 mU/m2 per minute) produced a significant antinatriuresis (0.18 [SEM 0.05] v. 0.37 mmol per minute at baseline, p < 0.01) and antidiuresis (2.53 [SEM 0.67] v. 6.21 [SEM 1.66] mL per minute, p < 0.01) with no associated changes in renal hemodynamics or sympathetic nervous activity. Subsequent higher doses of insulin improved urinary volume and sodium excretion to above baseline levels associated with renal and forearm vasodilatation, although mean arterial pressure remained unaltered. CONCLUSIONS: Hyperinsulinemia initially causes an antinatriuresis and antidiuresis through a direct action on the renal tubule. The subsequent phenomenon of escape from renal sodium retention may serve as a regulatory mechanism on sodium homeostasis in conditions associated with hyperinsulinemia and sodium retention.  相似文献   

15.
Hyperinsulinemia/insulin resistance is a well-known feature of polycystic ovarian (PCO) syndrome. In this study, the comparative roles of the peripheral tissues and the pancreatic beta-cells in its pathogenesis were evaluated. We determined basal serum C-peptide values (index of insulin secretion) and in vivo insulin action on peripheral glucose utilization (by the euglycemic hyperinsulinemic clamp technique) in obese (n = 5) and nonobese (n = 5) PCO women compared to obese (n = 5) and nonobese (n = 5) normal ovulatory women. During the clamp, feed-back inhibition of insulin on insulin secretion was studied by C-peptide percentage suppression. Serum C-peptide basal values did not differ significantly between the four groups. Insulin stimulated glucose utilization, expressed as M-value, was significantly decreased in both PCO groups compared to normal ovulatory women (p < 0.005). The metabolic clearance rate of glucose (MCR) and insulin (M/I) had the same behaviour. No differences were found between M, MCR and M/I values and the two groups of PCO subjects (obese/nonobese). The C-peptide percentage suppression was similar in all the groups. We conclude that PCO women have a significant insulin resistance that is independent of obesity, while basal and insulin-inhibited insulin secretion do not differ from normal-cycle subjects.  相似文献   

16.
The effects of short-term hyperinsulinemia on the production of both VLDL triglyceride and VLDL apoB were determined semiquantitatively before and during a 6-h euglycemic hyperinsulinemic clamp (40 mU.m-2 x min-1) in 17 women (8 chronically hyperinsulinemic obese, BMI = 35.7 kg/m2; 9 normal weight, BMI = 22.5 kg/m2). During acute hyperinsulinemia, plasma FFA decreased by approximately 95% within 1 h in both groups. VLDL triglyceride production decreased 66% in the control subjects (P = 0.0003) and 67% in obese subjects (P = 0.0003). ApoB production decreased 53% in control subjects (P = 0.03) but only 8% in obese (NS). Plasma triglycerides decreased by 40% from baseline in control subjects (P < 0.0001) but only by 10% in obese subjects (P = NS). Despite the similar decrease in triglyceride and apoB production in control subjects, VLDL particle size (triglyceride-to-apoB ratio) decreased with hyperinsulinemia (P = 0.003). In obese subjects, despite a decrease in triglyceride production similar to that in control subjects but no change in apoB production, VLDL size did not change appreciably. Acute hyperinsulinemia in humans: 1) suppresses plasma FFA equally in control and obese subjects at this high dose of insulin; 2) inhibits VLDL triglyceride production equally in control and obese subjects, perhaps secondary to the decrease in FFA; 3) inhibits VLDL apoB production in control but less so in obese subjects, suggesting that obese subjects may be resistant to this effect of insulin; 4) decreases plasma triglyceride and VLDL particle size in control subjects, reflecting either stimulation of LPL activity or a greater relative decrease in triglyceride to apoB production; and 5) does not decrease plasma triglyceride or VLDL size in obese subjects to the same extent as it does in control subjects. Thus, the insulin resistance of obesity affects some but not all aspects of VLDL metabolism.  相似文献   

17.
It has been previously reported that in healthy subjects, the acute reduction of free fatty acids (FFA) levels by acipimox enhances the GH response to GHRH. In the present study, the GH response to GHRH was evaluated during acute blockade of lipolysis obtained either by acipimox or by insulin at different infusion rates. Six healthy subjects (four men and two women, 25.8 +/- 1.9 yrs old, mean +/- SE) underwent three GHRH tests (50 micrograms iv, at 1300 h) during: 1) iv 0.9% NaCl infusion (1200-1500 h) after oral acipimox administration (250 mg) at 0700 h and at 1100 h; 2) 0.1 mU.kg-1.min-1 euglycemic insulin clamp (1200-1500 h) after oral acipimox administration (250 mg at 0700 h and at 1100 h); 3) 0.4 mU.kg-1.min-1 euglycemic insulin clamp (1200-1500 h) after oral placebo administration (at 0700 and 1100 h). Serum insulin (immunoreactive insulin) levels were significantly different in the three tests (12 +/- 2, 100 +/- 10, 194 +/- 19 pmol/L, P < 0.06), plasma FFA were low and similar (0.04 +/- 0.003, 0.02 +/- 0.005, 0.02 +/- 0.003, not significant), and the GH response to GHRH was progressively lower (4871 +/- 1286, 2414 +/- 626, 1076 +/- 207 micrograms/L 120 min), although only test 3 was significantly different from test 1 (P < 0.05). Pooling the three tests together, a significant negative regression was observed between mean serum immunoreactive insulin levels and the GH response to GHRH (r = -0.629, P < 0.01). Our results indicate that in healthy subjects, acipimox and hyperinsulinemia produce a similar decrease in FFA levels and that at similar low FFA, the GH response to GHRH is lower during insulin infusion than after acipimox. These data suggest that insulin exerts a negative effect on GH release. Because the insulin levels able to reduce the GH response to GHRH are commonly observed during the day, for instance during the postprandial period, we conclude that the insulin negative effect on GH release may have physiological relevance.  相似文献   

18.
BACKGROUND: Metabolic acidosis affects both vitamin D and insulin metabolism. Vitamin D is important in modulation of both insulin secretion and insulin sensitivity in uremia. The present study examines the effect of correction of metabolic acidosis on insulin action and secretion as well as 1,25 vitamin D3 concentrations in uremic patients. METHODS: Eight patients (age 18 +/- 1 year) on maintenance hemodialysis with metabolic acidosis were studied before and after two weeks of oral sodium bicarbonate (NaHCO3) treatment to correct the acidosis. To control for the effect of additional sodium, they were also studied after two weeks of an equivalent amount of oral sodium chloride (NaCl). Controls consisted of 7 healthy controls (age 19 +/- 1 year). Insulin sensitivity was measured by the hyperinsulinemic euglycemic clamp technique. Insulin secretion was measured by the hyperglycemic clamp technique. RESULTS: Oral NaHCO3 treatment led to significant increases in venous pH and serum bicarbonate concentrations but no significant change in intact parathyroid hormone (PTH) concentrations. Circulating 1,25 dihydroxyvitamin [(OH)2] D3 were significantly lower than control values initially and increased significantly after treatment. Oral NaCl did not change any of the biochemical parameters. Before treatment of acidosis, uremic patients had lower insulin sensitivity (insulin resistance) during constant hyperinsulinemia and lower insulin secretion during constant hyperglycemia compared with controls. Following two weeks of NaHCO3 treatment there were significant increases in insulin sensitivity and insulin secretion, although the values did not normalize. There were no changes in insulin sensitivity or insulin secretion following two weeks of NaCl. CONCLUSION: Treatment of metabolic acidosis increased both insulin sensitivity and insulin secretion in patients with uremia. This was accompanied by an increase in the circulating levels of 1,25(OH)2D3 but no change in those of parathyroid hormone.  相似文献   

19.
Impaired muscle glucose phosphorylation to glucose-6-phosphate by hexokinases (HKs)-I and -II may contribute to insulin resistance in NIDDM and obesity. HK-II expression is regulated by insulin. We tested the hypothesis that basal and insulin-stimulated expression of HK-II is decreased in NIDDM and obese subjects. Skeletal muscle HK-I and HK-II activities were measured in seven lean and six obese normal subjects and eight patients with NIDDM before and at 3 and 5 h of a hyperinsulinemic (80 mU x m(-2) x min(-1)) euglycemic clamp. To assess whether changes in HK-II expression seen during a glucose clamp are likely to be physiologically relevant, we also measured HK-I and HK-II activity in 10 lean normal subjects before and after a high-carbohydrate meal. After an overnight fast, total HK, HK-I, and HK-II activities were similar in lean and obese control subjects; but HK-II was lower in NIDDM patients than in lean subjects (1.42 +/- 0.16 [SE] vs. 2.33 +/- 0.24 nmol x min(-1) x mg(-1) molecular weight, P < 0.05) and accounted for a lower proportion of total HK (33 +/- 3 vs. 47 +/- 3%, P < 0.025). HK-II (but not HK-I) activity increased during the clamp in lean and obese subjects by 34 and 36% after 3 h and by 14 and 22% after 5 h of hyperinsulinemia; no increase was found in the NIDDM patients. In the lean subjects, muscle HK-II activity also increased by 15% 4 h after the meal, from 2.47 +/- 0.19 basally to 2.86 +/- 0.28 nmol x min(-1) x mg(-1) protein (P < 0.05). During the clamps, muscle HK-II activity correlated with muscle citrate synthase activity in the normal subjects (r = 0.58, P < 0.05) but not in the NIDDM patients. A weak relationship was noted between muscle HK-II activity and glucose disposal rate at the end of the clamp when all three groups were combined (r = 0.49, P < 0.05). In summary, NIDDM patients have lower muscle HK-II activity basally and do not increase the activity of this enzyme in response to a 5-h insulin stimulus. This defect may contribute to their insulin resistance. In nondiabetic obese subjects, muscle HK-II expression and its regulation by insulin are normal.  相似文献   

20.
This study examines the acute, subacute (overnight), and chronic (7-day) effects of intracerebroventricular (i.c.v.) administration of r-metMuLeptin on insulin sensitivity and systemic glucose turnover in conscious unrestrained rats (body weight, 250 to 300 g). Under postabsorptive conditions, acute i.c.v. leptin ([AL] 10 microg bolus) did not affect tracer (3-(3)H-glucose)-determined glucose production (GP) and utilization (GU) rates during the 2-hour hyperinsulinemic (2 mU x kg(-1) x min(-1)) euglycemic clamp. Chronic i.c.v. leptin ([CL] 10 microg/d for 7 days) administered by osmotic pumps markedly reduced the daily food consumption (P < .05), body weight (P < .05), and postabsorptive basal plasma glucose level (P < .01). During the glucose clamp, GP was markedly suppressed (55%) with CL (P < .001 v vehicle and pair-fed control groups). The insulin-induced increment in GU was significantly greater with CL (23.3 +/- 1.8 mg(-1) x kg(-1) x min(-1)) than with vehicle (16.9 +/- 0.2) and pair-feeding (17.1 +/- 0.6, both P < .001). Subacute i.c.v. leptin ([SL] 10 microg bolus) moderately but insignificantly decreased overnight food consumption (-18%) and body weight (-2.5 +/- 1.5 g). The glucose infusion rate during the final 60 minutes of the glucose clamp was 43% greater than for the vehicle group (P < .0001). SL also significantly increased GU (P < .005) and suppressed GP (P < .05) during the glucose clamp. Thus, we conclude that i.c.v. administered leptin has strong actions on the central nervous system that result in significant increases in insulin sensitivity and systemic GU, and these effects are achieved as early as overnight after leptin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号