共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been hypothesized that the structure of tissues and the hierarchy of differentiation from stem cell to terminally differentiated cell play a significant role in reducing the incidence of cancer in that tissue. One specific mechanism by which this risk can be reduced is by minimizing the number of divisions—and hence the mutational risk—that cells accumulate as they divide to maintain tissue homeostasis. Here, we investigate a mathematical model of cell division in a hierarchical tissue, calculating and minimizing the divisional load while constraining parameters such that homeostasis is maintained. We show that the minimal divisional load is achieved by binary division trees with progenitor cells incapable of self-renewal. Contrary to the protection hypothesis, we find that an increased stem cell turnover can lead to lower divisional load. Furthermore, we find that the optimal tissue structure depends on the time horizon of the duration of homeostasis, with faster stem cell division favoured in short-lived organisms and more progenitor compartments favoured in longer-lived organisms. 相似文献
2.
Andreas Handel Ira M. Longini Jr Rustom Antia 《Journal of the Royal Society Interface》2010,7(42):35-47
Although the influenza A virus has been extensively studied, a quantitative understanding of the infection dynamics is still lacking. To make progress in this direction, we designed several mathematical models and compared them with data from influenza A infections of mice. We find that the immune response (IR) plays an important part in the infection dynamics. Both an innate and an adaptive IR are required to provide adequate explanation of the data. In contrast, regrowth of epithelial cells did not seem to be an important mechanism on the time scale of the infection. We also find that different model variants for both innate and adaptive responses fit the data well, indicating the need for additional data to allow further model discrimination. 相似文献
3.
Daniel B. Reeves Morgane Rolland Bethany L. Dearlove Yifan Li Merlin L. Robb Joshua T. Schiffer Peter Gilbert E. Fabian Cardozo-Ojeda Bryan T. Mayer 《Journal of the Royal Society Interface》2021,18(179)
Clinical trials for HIV prevention can require knowledge of infection times to subsequently determine protective drug levels. Yet, infection timing is difficult when study visits are sparse. Using population nonlinear mixed-effects (pNLME) statistical inference and viral loads from 46 RV217 study participants, we developed a relatively simple HIV primary infection model that achieved an excellent fit to all data. We also discovered that Aptima assay values from the study strongly correlated with viral loads, enabling imputation of very early viral loads for 28/46 participants. Estimated times between infecting exposures and first positives were generally longer than prior estimates (average of two weeks) and were robust to missing viral upslope data. On simulated data, we found that tighter sampling before diagnosis improved estimation more than tighter sampling after diagnosis. Sampling weekly before and monthly after diagnosis was a pragmatic design for good timing accuracy. Our pNLME timing approach is widely applicable to other infections with existing mathematical models. The present model could be used to simulate future HIV trials and may help estimate protective thresholds from the recently completed antibody-mediated prevention trials. 相似文献
4.
Development is a process that needs to be tightly coordinated in both space and time. Cell tracking and lineage tracing have become important experimental techniques in developmental biology and allow us to map the fate of cells and their progeny. A generic feature of developing and homeostatic tissues that these analyses have revealed is that relatively few cells give rise to the bulk of the cells in a tissue; the lineages of most cells come to an end quickly. Computational and theoretical biologists/physicists have, in response, developed a range of modelling approaches, most notably agent-based modelling. These models seem to capture features observed in experiments, but can also become computationally expensive. Here, we develop complementary genealogical models of tissue development that trace the ancestry of cells in a tissue back to their most recent common ancestors. We show that with both bounded and unbounded growth simple, but universal scaling relationships allow us to connect coalescent theory with the fractal growth models extensively used in developmental biology. Using our genealogical perspective, it is possible to study bulk statistical properties of the processes that give rise to tissues of cells, without the need for large-scale simulations. 相似文献
5.
Simon L. Cotter Václav Klika Laura Kimpton Sally Collins Alexander E. P. Heazell 《Journal of the Royal Society Interface》2014,11(97)
In the human, placental structure is closely related to placental function and consequent pregnancy outcome. Studies have noted abnormal placental shape in small-for-gestational-age infants which extends to increased lifetime risk of cardiovascular disease. The origins and determinants of placental shape are incompletely understood and are difficult to study in vivo. In this paper, we model the early development of the human placenta, based on the hypothesis that this is driven by a chemoattractant effect emanating from proximal spiral arteries in the decidua. We derive and explore a two-dimensional stochastic model, and investigate the effects of loss of spiral arteries in regions near to the cord insertion on the shape of the placenta. This model demonstrates that disruption of spiral arteries can exert profound effects on placental shape, particularly if this is close to the cord insertion. Thus, placental shape reflects the underlying maternal vascular bed. Abnormal placental shape may reflect an abnormal uterine environment, predisposing to pregnancy complications. Through statistical analysis of model placentas, we are able to characterize the probability that a given placenta grew in a disrupted environment, and even able to distinguish between different disruptions. 相似文献
6.
7.
Dragomir B Bukur 《Sadhana》1987,10(1-2):13-34
Numerical solution of differential equations describing the counter-current backmixing model of Fryer and Potter is very difficult
due to the boundary value nature of the problem. Several numerical methods (shooting, superposition and finite difference)
have been described and tested on a problem with a single first-order reaction in an isothermal fluid bed reactor. It was
found that the finite difference method is the most stable method and provides accurate solution over the entire range of
parameters that were investigated, while the shooting and the superposition methods could not produce accurate solutions for
some parameter values. Also, some modifications of the Fryer and Potter model such as: compartment models and conversion to
an initial value type of problem (Jayraman-Kulkarni-Doraiswamy model), have been described. Results obtained from compartment
models are in close agreement with predictions obtained from the original Fryer and Potter model.
This paper is dedicated to Dr L K Doraiswamy on his sixtieth birthday. Computations reported in this paper were carried out
by N Nasif, J G Daly and S H Lane. 相似文献
8.
One-piece flow is a design rule that entails production in manufacturing cells on a ‘make one, check one, and move-on one’ basis (Black, J.T., 2007. Design rules for implementing Toyota Production System. International Journal of Production Research, 45 (16), 3639–3664), which reduces manufacturing lead time significantly. This paper proposes a sequential methodology comprised of a mathematical model and a heuristic approach (HA) for the design of a hybrid cellular manufacturing system (HMS), to facilitate one-piece flow practice. The mathematical model is employed in the cases of small- and medium-sized problems, and it attempts to minimise the total number of exceptional operations, while considering machine capacities and alternative machines. The machine-part matrix achieved by the mathematical model is input into the flow line design stage of the HA, where backflow within the cells is eliminated. However, for industrial problems, the proposed HA is utilised. After the formation of the cells by clustering, the HA attempts to eliminate exceptional operations of a given cellular configuration together with a functional structure by employing alternative machines, based on the decision rules developed. Later, unidirectional flow within the cells is achieved and the capacity and budget constraints are satisfied. A medium-sized problem is solved by using both of the approaches, namely, the model integrated with the flow-line design stage of the HA and the complete HA. The results are discussed and the limitations are explained. 相似文献
9.
Jessica M. Conway Paige Meily Jonathan Z. Li Alan S. Perelson 《Journal of the Royal Society Interface》2021,18(177)
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. Typically suspension of therapy is rapidly followed by rebound of viral loads to high, pre-therapy levels. Indeed, a recent study showed that approximately 90% of treatment interruption study participants show viral rebound within at most a few months of therapy suspension, but the remaining 10%, showed viral rebound some months, or years, after ART suspension. Some may even never rebound. We investigate and compare branching process models aimed at gaining insight into these viral dynamics. Specifically, we provide a theory that explains both short- and long-term viral rebounds, and post-treatment control, via a multitype branching process with time-inhomogeneous rates, validated with data from Li et al. (Li et al. 2016 AIDS 30, 343–353. (doi:10.1097/QAD.0000000000000953)). We discuss the associated biological interpretation and implications of our best-fit model. To test the effectiveness of an experimental intervention in delaying or preventing rebound, the standard practice is to suspend therapy and monitor the study participants for rebound. We close with a discussion of an important application of our modelling in the design of such clinical trials. 相似文献
10.
Russell C. Rockne Andrew D. Trister Joshua Jacobs Andrea J. Hawkins-Daarud Maxwell L. Neal Kristi Hendrickson Maciej M. Mrugala Jason K. Rockhill Paul Kinahan Kenneth A. Krohn Kristin R. Swanson 《Journal of the Royal Society Interface》2015,12(103)
Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient''s disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. 相似文献
11.
Infectious diseases spreading in a human population occasionally exhibit sudden transitions in their qualitative dynamics. Previous work has successfully predicted such transitions in New York City''s historical measles incidence using the seasonally forced susceptible–infectious–recovered (SIR) model. This work relied on a dataset spanning 45 years (1928–1973), which we have extended to 93 years (1891–1984). We identify additional dynamical transitions in the longer dataset and successfully explain them by analysing attractors and transients of the same mechanistic epidemiological model. 相似文献
12.
Natthapong Sueviriyapan Daniel Granados-Fuentes Tatiana Simon Erik D. Herzog Michael A. Henson 《Journal of the Royal Society Interface》2021,18(182)
In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABAA receptor subunits, often referred to as synaptic GABAA (gamma subunit) and extra-synaptic GABAA (delta subunit). To test the functional roles of these distinct GABAA in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABAA receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABAA reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABAA densities could enhance synchrony, as opposed to increasing delta GABAA densities. Overall, our model reveals how blocking GABAA receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABAA density in the winter could underlie the tighter phase relationships among SCN cells. 相似文献
13.
Lan K. Nguyen 《Journal of the Royal Society Interface》2012,9(73):1998-2010
Feedback controls are central to cellular regulation. Negative-feedback mechanisms are well known to underline oscillatory dynamics. However, the presence of multiple negative-feedback mechanisms is common in oscillatory cellular systems, raising intriguing questions of how they cooperate to regulate oscillations. In this work, we studied the dynamical properties of a set of general biochemical motifs with dual, nested negative-feedback structures. We showed analytically and then confirmed numerically that, in these motifs, each negative-feedback loop exhibits distinctly different oscillation-controlling functions. The longer, outer feedback loop was found to promote oscillations, whereas the short, inner loop suppresses and can even eliminate oscillations. We found that the position of the inner loop within the coupled motifs affects its repression strength towards oscillatory dynamics. Bifurcation analysis indicated that emergence of oscillations may be a strict parametric requirement and thus evolutionarily tricky. Investigation of the quantitative features of oscillations (i.e. frequency, amplitude and mean value) revealed that coupling negative feedback provides robust tuning of the oscillation dynamics. Finally, we demonstrated that the mitogen-activated protein kinase (MAPK) cascades also display properties seen in the general nested feedback motifs. The findings and implications in this study provide novel understanding of biochemical negative-feedback regulation in a mixed wiring context. 相似文献
14.
Marcos Nahmad 《Journal of the Royal Society Interface》2011,8(63):1429-1439
Morphogen-mediated patterning is the predominant mechanism by which positional information is established during animal development. In the classical view, the interpretation of positional signals depends on the equilibrium distribution of a morphogen, regardless of the dynamics of gradient formation. The problem of whether or not morphogen dynamics contribute to developmental patterning has not been explored in detail, partly because genetic experiments, which selectively affect signalling dynamics while maintaining unchanged the steady-state morphogen profile, are difficult to design and interpret. Here, I present a modelling-based approach to identify genetic mutations in developmental patterning that may affect the transient, but leave invariant the steady-state signalling gradient. As a case study, this approach is used to explore the dynamic properties of Hedgehog (Hh) signalling in the developing wing of the fruitfly, Drosophila melanogaster. This analysis provides insights into how different properties of the Hh gradient dynamics, such as the duration of exposure to the signal or the maximum width of the transient gradient, can be genetically perturbed without affecting the steady-state distribution of the Hh concentration profile. I propose that this method can be used as an experimental design tool to investigate the role of transient morphogen gradients in developmental patterning and discuss the generality of these ideas in other problems. 相似文献
15.
Thomas Stiehl Natalia Baran Anthony D. Ho Anna Marciniak-Czochra 《Journal of the Royal Society Interface》2014,11(94)
Recent experimental evidence suggests that acute myeloid leukaemias may originate from multiple clones of malignant cells. Nevertheless, it is not known how the observed clones may differ with respect to cell properties, such as proliferation and self-renewal. There are scarcely any data on how these cell properties change due to chemotherapy and relapse. We propose a new mathematical model to investigate the impact of cell properties on the multi-clonal composition of leukaemias. Model results imply that enhanced self-renewal may be a key mechanism in the clonal selection process. Simulations suggest that fast proliferating and highly self-renewing cells dominate at primary diagnosis, while relapse following therapy-induced remission is triggered mostly by highly self-renewing but slowly proliferating cells. Comparison of simulation results to patient data demonstrates that the proposed model is consistent with clinically observed dynamics based on a clonal selection process. 相似文献
16.
17.
Costs associated with worker injuries can be high and some suggest investments in ergonomic solutions can lower those costs. However, many employers are still unsure if investing in various ergonomic solutions will generate benefits such as increased production and/or reduce workmen's compensation expenses. Estimating current losses and predicting possible gains provide most of the information needed to decide upon ergonomic investment. This paper presents a model employers can use to predict cost savings from ergonomic investments given certain input factors, including current losses, cost of implementation, and success of implementation. 相似文献
18.
The operation safety of depressurizing a high-pressure gas-filled vessel is of crucial importance in petroleum, chemical and biological processing industries. The present study describes a simple model of a slow depressurization process and derives its analytical solution in a recurrence form. This analytical solution is expected to be useful for engineering applications and for the assessment of either detailed numerical simulations or experimental data. 相似文献
19.
Frederik Ziebell Ana Martin-Villalba Anna Marciniak-Czochra 《Journal of the Royal Society Interface》2014,11(94)
In the adult hippocampus, neurogenesis—the process of generating mature granule cells from adult neural stem cells—occurs throughout the entire lifetime. In order to investigate the involved regulatory mechanisms, knockout (KO) experiments, which modify the dynamic behaviour of this process, were conducted in the past. Evaluating these KOs is a non-trivial task owing to the complicated nature of the hippocampal neurogenic niche. In this study, we model neurogenesis as a multicompartmental system of ordinary differential equations based on experimental data. To analyse the results of KO experiments, we investigate how changes of cell properties, reflected by model parameters, influence the dynamics of cell counts and of the experimentally observed counts of cells labelled by the cell division marker bromodeoxyuridine (BrdU). We find that changing cell proliferation rates or the fraction of self-renewal, reflecting the balance between symmetric and asymmetric cell divisions, may result in multiple time phases in the response of the system, such as an initial increase in cell counts followed by a decrease. Furthermore, these phases may be qualitatively different in cells at different differentiation stages and even between mitotically labelled cells and all cells existing in the system. 相似文献