首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du  Yanqiu  Jiang  Cheng  Song  Li  Gao  Bin  Gong  Hao  Xia  Wei  Sheng  Lei  Wang  Tao  He  Jianping 《Nano Research》2020,13(10):2784-2790

Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative. Here, we develop a feasible way, gamma irradiation, for constructing defective structure on the surface of WO3 nanosheets, which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23% at −0.3 V vs. RHE. Moreover, we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction (HER) on the active site and thus boost the selectivity of nitrogen reduction.

  相似文献   

2.
Yang  Xi  Gao  Ling  Guo  Qing  Li  Yongjiang  Ma  Yue  Yang  Ju  Gong  Changyang  Yi  Cheng 《Nano Research》2020,13(10):2579-2594

Over the past decade, numerous studies have attempted to enhance the effectiveness of radiotherapy (external beam radiotherapy and internal radioisotope therapy) for cancer treatment. However, the low radiation absorption coefficient and radiation resistance of tumors remain major critical challenges for radiotherapy in the clinic. With the development of nanomedicine, nanomaterials in combination with radiotherapy offer the possibility to improve the efficiency of radiotherapy in tumors. Nanomaterials act not only as radiosensitizers to enhance radiation energy, but also as nanocarriers to deliver therapeutic units in combating radiation resistance. In this review, we discuss opportunities for a synergistic cancer therapy by combining radiotherapy based on nanomaterials designed for chemotherapy, photodynamic therapy, photothermal therapy, gas therapy, genetic therapy, and immunotherapy. We highlight how nanomaterials can be utilized to amplify antitumor radiation responses and describe cooperative enhancement interactions among these synergistic therapies. Moreover, the potential challenges and future prospects of radio-based nanomedicine to maximize their synergistic efficiency for cancer treatment are identified.

  相似文献   

3.

Oligo(p-phenyleneethynylene)s (OPEs) end-capped with (alkynyl)bis(diphosphine)ruthenium and thiol/thiolate groups stabilize ca. 2 nm diameter gold nanoparticles (AuNPs). The morphology, elemental composition and stability of the resultant organometallic OPE/AuNP hybrid materials have been defined using a combination of molecular- and nano-material chacterization techniques. The hybrids display long-term stability in solution (more than a month), good solubility in organic solvents, reversible ruthenium-centered oxidation, and transparency beyond 800 nm, and possess very strong nonlinear absorption activity at the first biological window, and unprecedented two-photon absorption activity in the second biological window (σ2 up to 38,000 GM at 1,050 nm).

  相似文献   

4.
Jia  Wei  Wu  Baohu  Sun  Shengtong  Wu  Peiyi 《Nano Research》2020,13(11):2973-2978

Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.

  相似文献   

5.
Chen  Yanlin  Cheng  Kui 《Nano Research》2020,13(10):2617-2624

Nanoparticles (NPs) which are innovation and research focus in drug delivery systems, still have some disadvantages limiting its application in clinical use, such as short circulation time, recognition and clearance by reticuloendothelial system (RES) and passive targeting in certain organs. However, the recent combination of natural components and nanotechnology has offered new solutions to address these problems. A novel biomimetic platform consisting of nanoparticle core and membrane shell, such as cell membrane, exosome or vesicle vastly improves properties of nanoparticles. These coated nanoparticles can replicate the unique functions of the membrane, such as prolonged blood circulation, active targeting capability and enhanced internalization. In this review, we focus on the newest development of biological-camouflaged nanoparticles and mainly introduce its application related to cancer therapy and toll-like receptor.

  相似文献   

6.
Liu  Hao  Siron  Martin  Gao  Mengyu  Lu  Dylan  Bekenstein  Yehonadav  Zhang  Dandan  Dou  Letian  Alivisatos  A. Paul  Yang  Peidong 《Nano Research》2020,13(5):1453-1458

The rapid development of solar cells based on lead halide perovskites (LHPs) has prompted very active research activities in other closely-related fields. Colloidal nanostructures of such materials display superior optoelectronic properties. Especially, one-dimensional (1D) LHPs nanowires show anisotropic optical properties when they are highly oriented. However, the ionic nature makes them very sensitive to external environment, limiting their large scale practical applications. Here, we introduce an amphiphilic block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP), to chemically modify the surface of colloidal CsPbBr3 nanowires. The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water. Taking advantage of the stability enhancement, we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires, and studied their anisotropic optical properties.

  相似文献   

7.
Smith  Alexander F.  Liu  Xiaomeng  Woodard  Trevor L.  Fu  Tianda  Emrick  Todd  Jiménez  Juan M.  Lovley  Derek R.  Yao  Jun 《Nano Research》2020,13(5):1479-1484

Electronic sensors based on biomaterials can lead to novel green technologies that are low cost, renewable, and eco-friendly. Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens. The nanowire sensor responds to a broad range of ammonia concentrations (10 to 106 ppb), which covers the range relevant for industrial, environmental, and biomedical applications. The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath. These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry, agriculture, environmental monitoring, and healthcare.

  相似文献   

8.
Xu  Shi-Long  Shen  Shan-Cheng  Wei  Ze-Yue  Zhao  Shuai  Zuo  Lu-Jie  Chen  Ming-Xi  Wang  Lei  Ding  Yan-Wei  Chen  Ping  Chu  Sheng-Qi  Lin  Yue  Qian  Kun  Liang  Hai-Wei 《Nano Research》2020,13(10):2735-2740

Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far. Here, an universial synthetic method is developed for building a library of bimetallic nanoparticles on mesoporous sulfur-doped carbon supports, consisting of 24 combinations of 3 noble metals (that is, Pt, Rh, Ir) and 7 other metals, with average particle sizes ranging from 0.7 to 1.4 nm. The synthetic strategy is based on the strong metal-support interaction arising from the metal-sulfur bonding, which suppresses the metal aggregation during the H2-reduction at 700 °C and ensure the formation of small-sized and alloyed bimetallic nanoparticles. The enhanced catalytic properties of the ultrasmall bimetallic nanoparticles are demonstrated in the dehydrogenation of propane at high temperature and oxidative dehydrogenations of N-heterocycles.

  相似文献   

9.
Zheng  Yapeng  Yang  Tao  Fang  Zhi  Shang  Minghui  Zhang  Zuotai  Yang  Jack  Fan  Jiaxin  Yang  Weiyou  Hou  Xinmei  Wu  Tom 《Nano Research》2020,13(11):2994-3000

In the present work, we report the growth of all-inorganic perovskite nanorings with dual compositional phases of CsPbBr3 and CsPb2Br5 via a facile hot injection process. The self-coiling of CsPbBr3-CsPb2Br5 nanorings is driven by the axial stress generated on the outside surface of the as-synthesized nanobelts, which results from the lattice mismatch during the transformation of CsPbBr3 to CsPb2Br5. The tailored growth of nanorings could be achieved by adjusting the key experimental parameters such as reaction temperature, reaction time and stirring speed during the cooling process. The photoluminescence intensity and quantum yield of nanorings are higher than those of CsPbBr3 nanobelts, accompanied by a narrower full width at half maximum (FWHM), suggesting their high potential for constructing self-assembled optoelectronic nanodevices.

  相似文献   

10.
Blinking fluorophore perovskite nanocrystals (NCs) were employed to image the fine structure of the polystyrene (PS) electrospun fibers. The conditions of CsPbBr3 NCs embedded and dispersed into PS were investigated and optimized. The stochastic optical reconstruction microscopy is employed to visualize the fine structure of the resulted CsPbBr3@PS electrospun fibers at sub-diffraction limit. The determined resolution in the reconstructed nanoscopic image is around 25.5 nm, which is much narrower than that of conventional fluorescence image. The complex reticulation and multicompartment in bead sub-diffraction-limited structures of CsPbBr3@PS electrospun fibers were successfully mapped with the help of the stochastic blinking properties of CsPbBr3 NCs. This work demonstrated the potential applications of CsPbBr3 perovskite NCs in super-resolution fluorescence imaging to reconstruct the sub-diffraction-limited features of polymeric material.  相似文献   

11.
Actively tunable acoustic metamaterials have attracted ever increasing attention.However,their tunable frequency range is quite narrow(tens of Hz)even under ultrahigh applied voltage(about 1,000 V).Here,we report a superbroad-band actively tunable acoustic metamaterials with the bandwidth over 400 Hz under a low voltage.In the actively tunable acoustic metamaterials,the acoustic membrane is a laminated nanocomposite consisting of a poly(ethylene terephthalate)(PET)and super-aligned carbon nanotube(CNT)drawn from CN T forest array.The laminated nanocomposite membrane exhibits adjustable acoustic properties,whose modulus can be adjusted by applying external electric field.The maximum frequency bandwidth of PET/CN T nanocomposite membrane reaches 419 Hz when applying an external DC voltage of 60 V.Our actively tunable acoustic metamaterials with superbroad-band and lightweight show very promising foreground in noise reduction applications.  相似文献   

12.
Immunotherapy techniques,such as immune checkpoint inhibitors,chimeric antigen receptor(CAR)T cell therapies and cancer vaccines,have been burgeoning with great success,particularly for specific cancer types.However,side effects with fatal risks,dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy.Nano metal-organic frameworks(nMOFs),with an accurate structure and a narrow size distribution,are emerging as a solution to these problems.In addition to their function of temporospatial delivery,a large library of their compositions,together with flexibility in chemical interaction and inherent immune efficacy,offers opportunities for various designs of nMOFs for immunotherapy.In this review,we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies.We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation.Finally,a prospect of nMOFs in cancer immunotherapy will be discussed.  相似文献   

13.
It is well-known that microscale gaps or defects are ubiquitous and can be penetrated by vapor,resulting in the failure of superhydrophobic effect and undesired condensate flooding under high subcooling.Here,we propose and demonstrate that such problem can be solved by the oblique arrangement of nanowires.Such a structure has been demonstrated to own anti-vapor-penetration and microdrop self-transport functions under high subcooling,unaffected by the microscale gaps.This is because vapor molecules can be intercepted by oblique nanowires and preferentially nucleate at near-surface locations,avoiding the penetration of vapor into the microscale gaps.As-formed microdrops can suspend upon the nanowires and have low solid-liquid adhesion.Besides,oblique nanowires can generate asymmetric surface tension and microdrop coalescence can release driving energy,both of which facilitate the microdrop self-removal via sweeping and jumping ways.This new design idea helps develop more advanced condensation mass and heat transfer interfaces.  相似文献   

14.
Biologically,there exist two kinds of syntheses:photosynthesis and ATP-driven biosynthesis.The light harvesting of photosynthesis is known to achieve an efficiency of?95%by the quantum energy transfer of photons.However,how the ATP-driven biosynthesis reaches its high efficiency still remains unknown.Deoxynucleotide triphosphates(dNTPs)in polymerase chain reaction(PCR)adopt the identical way of ATP to release their energy,and thus can be employed to explore the ATP energy process.Here,using a gold nanoparticle(AuNP)enhanced PCR(AuNP-PCR),we demonstrate that the energy released by phosphoanhydride-bond(PB)hydrolysis of dNTPs is in form of photons(PB-photons)to drive DNA replication,by modulating their resonance with the average inter-AuNP distance(D).The experimental results show that both the efficiency and yield of PCR periodically oscillate with D increasing,indicating a quantized process,but not simply a thermal one.The PB-photon wavelength is further determined to 8.4 pm.All these results support that the release,transfer and utilization of bioenergy are in the form of photons.Our findings of ATP-energy quantum conversion will open a new avenue to the studies of high-efficiency bioenergy utilization,biochemistry,biological quantum physics,and even brain sciences.  相似文献   

15.
16.

DNA-based nanofabrication of inorganic nanostructures has potential application in electronics, catalysis, and plasmonics. Previous DNA metallization has generated conductive DNA-assembled nanostructures; however, the use of semiconductors and the development of well-connected nanoscale metal—semiconductor junctions on DNA nanostructures are still at an early stage. Herein, we report the first fabrication of multiple electrically connected metal—semiconductor junctions on individual DNA origami by location-specific binding of gold and tellurium nanorods. Nanorod attachment to DNA origami was via DNA hybridization for Au and by electrostatic interaction for Te. Electroless gold plating was used to create nanoscale metal—semiconductor interfaces by filling the gaps between Au and Te nanorods. Two-point electrical characterization indicated that the Au—Te—Au junctions were electrically connected, with current—voltage properties consistent with a Schottky junction. DNA-based nanofabrication of metal—semiconductor junctions opens up potential opportunities in nanoelectronics, demonstrating the power of this bottom-up approach.

  相似文献   

17.
Lee  Seung Hwan  Zhu  Xiaojian  Lu  Wei D. 《Nano Research》2020,13(5):1228-1243

With the slowing down of the Moore’s law and fundamental limitations due to the von-Neumann bottleneck, continued improvements in computing hardware performance become increasingly more challenging. Resistive switching (RS) devices are being extensively studied as promising candidates for next generation memory and computing applications due to their fast switching speed, excellent endurance and retention, and scaling and three-dimensional (3D) stacking capability. In particular, RS devices offer the potential to natively emulate the functions and structures of synapses and neurons, allowing them to efficiently implement neural networks (NNs) and other in-memory computing systems for data intensive applications such as machine learning tasks. In this review, we will examine the mechanisms of RS effects and discuss recent progresses in the application of RS devices for memory, deep learning accelerator, and more faithful brain-inspired computing tasks. Challenges and possible solutions at the device, algorithm, and system levels will also be discussed.

  相似文献   

18.
Ning  Rui  Jiang  Yue  Zeng  Yitian  Gong  Huaxin  Zhao  Jiheng  Weisse  Jeffrey  Shi  Xinjian  Gill  Thomas M.  Zheng  Xiaolin 《Nano Research》2020,13(5):1459-1464

On-demand hydrogen generation is desired for fuel cells, energy storage, and clean energy applications. Silicon nanowires (SiNWs) and nanoparticles (SiNPs) have been reported to generate hydrogen by reacting with water, but these processes usually require external assistance, such as light, electricity or catalysts. Herein, we demonstrate that a porous SiNWs array, which is fabricated via the metal-assisted anodic etching (MAAE) method, reacts with water under ambient and dark conditions without any energy inputs. The reaction between the SiNWs and water generates hydrogen at a rate that is about ten times faster than the reported rates of other Si nanostructures. Two possible sources of enhancement are discussed: SiNWs maintain their high specific surface area as they don’t agglomerate, and the intrinsic strain of the nanowires promotes the reactivity. Moreover, the porous SiNWs array is portable, reusable, and environmentally friendly, yielding a promising route to produce hydrogen in a distributed manner.

  相似文献   

19.
Chen  Zheng  Yang  Wenjuan  Wu  Yue  Zhang  Chao  Luo  Jun  Chen  Chen  Li  Yadong 《Nano Research》2020,13(11):3075-3081

Atomic non-noble metal materials show the potential to substitute noble metals in catalysis. Herein, melamine formaldehyde resin is developed to synthesize atomic iron on mesoporous nitrogen-doped carbon. The triazine units with abundant nitrogen content and cavity can realize effectively anchoring of single metal atoms. The atomic iron with unique charge and coordination characteristics shows superior catalytic performance in dehydrogenation reaction. Various N-heterocycles compounds and amines can be efficiently dehydrogenated into the corresponding products at room temperature, which is the mildest of all reported reaction conditions even when noble metal catalysts are considered. Therefore, development of atomic non-noble metal catalysts with mesoporous structure may provide an effective way to realize the substitution for noble metals in heterogeneous catalysis.

  相似文献   

20.
Zhang  Guobin  Xiong  Tengfei  Pan  Xuelei  Zhao  Yunlong  Yan  Mengyu  Zhang  Haining  Wu  Buke  Zhao  Kangning  Mai  Liqiang 《Nano Research》2019,12(4):905-910

Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials. Characterizing the minute-variations in complementary aspects such as crystal structure, chemical bonds, and electron/ion conductivity will give an in-depth understanding on the reaction mechanism of electrode materials, as well as revealing pathways for optimization. Here, vanadium pentoxide (V2O5), a typical cathode material suffering from severe capacity decay during cycling, is characterized by in-situ X-ray diffraction (XRD) and in-situ Raman spectroscopy combined with electrochemical tests. The phase transitions of V2O5 within the 0–1 Li/V ratio are characterized in detail. The V–O and V–V distances became more extended and shrank compared to the original ones after charge/discharge process, respectively. Combined with electrochemical tests, these variations are vital to the crystal structure cracking, which is linked with capacity fading. This work demonstrates that chemical bond changes between the transition metal and oxygen upon cycling serve as the origin of the capacity fading.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号