首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于非线性技术改善能量采集器的能量采集效果作用,本文研究了非线性磁力耦合的双悬臂梁压电振动能量采集器,该采集器由两条不同的固有频率悬臂梁与永磁体组成.本文给出双梁磁力耦合压电能量采集器模型并建立了动力学方程式,通过实验测试获取相关参数与拟合磁力公式,数值仿真分析了双梁固有频率比1∶1.2与1∶1.5和永磁体初始间距40mm与30mm的4种结构能量采集器的电压输出性能与频率特征.根据数值分析设计实验:外激励加速度3m/s2作用下,双梁磁力结构能量采集器比单梁线性结构多一个电压共振峰;双梁固有频率比为1∶1.5比双梁固有频率比1∶1.2的电压响应带宽宽;初始磁距30mm共振峰值分别为(12Hz,39.4V)与(18Hz,13.4V)比初始磁距40mm两电压共振峰高且电压共振峰峰之间的电压输出比其他组合结构高.  相似文献   

2.

Energy harvesting has experienced significant attention from researchers globally. This is due to the quest to power remote sensors and portable devices with power requirements of tens to hundreds of μW. Hence, ambient vibration energy has the potential to provide such power demands. Thus, cantilever beams with piezoelectric materials have been utilized to transduce mechanical energy in vibrating bodies to electrical energy. However, the challenge is to develop energy harvesters that can harvest sufficient amount of energy needed to power wireless sensor nodes at wide frequency bandwidth. In this article, piezoelectric energy harvester (PEH) beams with coupled magnets are proposed to address this issue. With macro fiber composite as the piezoelectric transducer, mathematical models of different system configurations having magnetic couplings are derived based on the continuum based model. Simulations of the system dynamics are done using numerical integration technique in MATLAB software to study the influence of magnetic interactions in generating power and frequency bandwidth due to base excitations at low frequency range. Experimental results comparing conventional system and the proposed piezoelectric beam configurations with coupled magnets are also presented. Finally, the optimal beam separation distance between the magnetic oscillator and PEH is presented in this work.

  相似文献   

3.
Li  Ping  Xu  Nuo  Gao  Chunhui 《Microsystem Technologies》2020,26(5):1707-1716

In this paper, a novel broadband hybrid piezoelectric and electromagnetic energy harvester using in the low frequency vibration environment is proposed, which combines nonlinear magnet force and frequency-up conversion mechanism simultaneously. Performances are studied by theoretical analysis and experimental test. Electromechanical governed equations of harvester are established, and analytical solutions of vibration response, output voltage and power are derived. Then, effects of nonlinear force, spacing between low frequency vibration beam and piezoelectric beam, load resistance and input excitation on harvester performances are investigated by experimental test. It can be concluded that the harvester can be used to work at the low-frequency environment efficiently, and the resonant frequency and harvesting bandwidth can be tuned by the nonlinear force between the magnets and the spacing between beams. Moreover, the larger the nonlinear magnetic force and the smaller the distance between two beams, the lower working frequency and the larger bandwidth. Compared with the corresponding linear apartment, output power and bandwidth of proposed harvester are improved 90% and 125% respectively.

  相似文献   

4.
This paper is concerned with extending the energy transfer filters (ETFs) designs to a more general case where the design requirement is to focus signal energy from different input frequency bands into a desired output frequency range. ETFs are a class of non-linear filters recently proposed by the authors to employ non-linear effects to transfer signal energy from one frequency band to a different frequency location. The new ETF designs considered in the present study involve the development of an algorithm for determining output frequencies of non-linear systems subject to an input the frequency components of which are located in two separate frequency intervals and a new procedure for the implementation of the filter design. The results achieved provide an effective approach to the solution to a more general ETF design problem.  相似文献   

5.
Leaky wave antennas using periodic microstrip lines are natural choices for versatile beam scanning applications. In this work, a shorted stub and an open stub are simultaneously used in the same unit cell to generate resonant frequencies dependent on the stub dimensions. Placing one such resonant frequency at the second Bragg stop band, a single wideband response is obtained. Next, the stub lengths are tuned to obtain two resonant frequencies which are placed at the second and fourth Bragg stop bands, respectively to obtain a dual wideband response. Design guidelines are outlined for obtaining these wide bands and corresponding radiation regions. Two such geometries with single and dual‐band nature are fabricated. The single wide‐band antenna has a pass‐band from 5.89 to 11.57 GHz with a beam scanning range of ?56° to 33°. The dual‐band antenna has two pass‐bands radiating in the frequency range 5‐6.5 GHz and 10.7‐14.7 GHz. Beam scanning range in the first pass‐band is ?72° to ?5°. The second pass‐band, in part, demonstrates a dual‐beam nature with the forward beam scanning from 28.9° to 54.5° and backward beam scanning from ?54.5° to 14.76° as the frequency varies from 12 to 14.5 GHz.  相似文献   

6.
为了提高线性压电振动能量采集器的输出特性,在线性压电振动能量采集器悬臂梁末端引入Duffing非线性磁力,构造了一种双稳态非线性压电振动能量采集器;综合考虑能量采集器的动态振型与轴向应变分布情况,建立了系统非线性机电耦合集总参数运动控制模型,并利用4阶、5阶Runge-Kutta算法对能量采集器的非线性振动特性进行了数值模拟;利用谐波平衡法计算获得了能量采集器的幅频响应方程,数值分析了激励频率、激励幅值以及磁铁间距等对系统非线性振动特性的影响,发现双稳态运动可以极大地提高能量采集器的频率响应范围和能量采集效率,并且能量采集器在低频、低幅值激励情况下可以产生大幅值周期运动;最后,通过实验对数值计算结果进行了验证.  相似文献   

7.
运用梁的横向振动特性分析了梁振动频率与平行板电容形成的静电刚度的关系,并以此设计了静电刚度式谐振微加速度计。在加速度作用下,检测质量产生的惯性力使电容器极板发生位移来改变电容结构的间隙大小,从而使谐振频率发生变化,通过检测频率变化量来测量输入加速度的大小。根据加速度计的工作原理说明检测过程中梁的机械刚度保持不变,只与产生静电刚度的电容间隙变化相关,减小了检测信号对机械误差与残余应力的依赖性。运用加工参数进行理论计算得出加速度计的灵敏度为21.17Hz/gn,在CoventorWare2005中进行仿真表明:加速度计的固有频率为23.94kHz,灵敏度约为20Hz/gn,与理论设计值相近。  相似文献   

8.

In this paper a miniature piezoelectric energy harvester (PEH) with clamped–clamped beam and mass loading at the center is introduced which has more consistency against off-axis accelerations and more efficiency in comparison to other cantilever PEH’s. The beams consist of different layers of Si, piezoelectric, and insulators based on MEMS technology that vibrates by applying an external force to the fixed frame. Due to beam vibration, variable stress is applied to the AlN piezoelectric and a potential difference is created at the output terminals. AlN is deposited on clamped–clamped beams in such a way that produce more stress points which cause more power to be generated in comparison to other cantilever beam PEH’s with about same dimensions. A partial differential equations (PDE) describing the flexural wave propagating in the multi-morph clamped–clamped beam are solved as theoretical calculations for inherent frequency estimation and is confirmed by simulation results. The obtained inherent frequency is 42 Hz which with 1 g (g = 9.81 m/s2) acceleration produces 4 V and 80 µW maximum electrical peak power that can be used in the node of low-power consumption wireless sensor node for wireless sensor network (WSN) applications.

  相似文献   

9.
Microleverage mechanism which is widely applied in microelectromechanical systems (MEMS) transfers and amplifies force or displacement from input to output. In this work, one-stage microleverage mechanism is integrated into a biaxial micro resonant accelerometer to improve sensitivity. Force amplification factor of the microleverage is analyzed and deduced by integral method. The results from theoretical model match well with the ones from finite element method (FEM) simulation, which proves that the proposed model is relatively accurate and the width of lever beam is a quite important parameter in design. The resonant accelerometer is successfully fabricated by MEMS technology. Preliminary experiments are conducted and demonstrate differential sensitivity of 71 Hz/g for the accelerometer with resonant frequency of 267.726 kHz.  相似文献   

10.
介绍了一种具有差动输出石英力传感器,该传感器由轮辐式弹性结构和2只石英力敏谐振器组成。利用分别位于正负应力区2只力敏元件感知作用力的大小,进而进行差动输出,以实现零点温漂与时漂自补偿。分析了弹性梁的结构特性;介绍了双端音叉石英力敏谐振器的结构、力学特性及力传感器的制作过程。对传感器进行了静态测试,结果表明:传感器测量范围为0~300N,静态精度为0.05%。  相似文献   

11.
In this article, miniaturization of dual‐band slot antenna design for GPS, WLAN and amateur radio applications is presented. The proposed dual‐band miniaturized antenna is achieved using slits, rectangular split ring and metallic strips fed by 50 Ω microstrip feed. The first resonant frequency is achieved by loading reference antenna with eight slits that is antenna 1 and the second resonant frequency is achieved by loading with one center slits and rectangular split ring that is antenna 2. Dual‐band antenna is achieved by loading reference slot antenna with nine slits and rectangular split ring which resonates at frequency of 1.52 and 3.03 GHz respectively. As a result, it is achieved 53.79% reduction in first band resonant frequency with 76.07% improvement in ?10 dB bandwidth and 7.90% reduction in second band resonant frequency compared to reference slot antenna. Further, this dual‐band antenna is miniaturized by metallic strips which are placed on the bottom of the substrate. This results in 61.39% reduction in first band resonant frequency with 32.07% improvement in ?10 dB bandwidth and 26.13% reduction in second band resonant frequency in comparison with reference slot antenna topology.  相似文献   

12.
A nonlinear hybrid piezoelectric (PE) and electromagnetic (EM) energy harvester is proposed, and its working model is established. Then the vibration response, output power, voltage and current of nonlinear hybrid energy harvester subjected to harmonic excitation are derived by the method of harmonic balance, and their normalized forms are obtained by the defined dimensionless parameters. Through numerical simulation and experimental test, the effects of nonlinear factor, load resistance, excitation frequency and the excitation acceleration on amplitude and electrical performances of hybrid energy harvester are studied, which shows that the numerical results are in agreement with that of experimental tests. Furthermore, it can be concluded that the bigger nonlinear factor, the lower resonant frequency; moreover, there is an optimal nonlinear factor that make the harvester output the maximum power. In addition, the output power of nonlinear hybrid energy harvester reaches the maximum at the optimal loads of PE and EM elements, which can be altered by the excitation acceleration. Meanwhile, the resonant frequency corresponding to the maximum power rises firstly and then falls with PE load enhancing, while it rises with EM load decreasing; furthermore, the frequency lowers with the acceleration increasing. Besides, the larger acceleration is, the bigger power output and the wider 3 dB bandwidth are. Compared with performances of linear hybrid energy harvester, the designed nonlinear energy harvester not only can reduce the resonant frequency and enlarger the bandwidth but also improve the output power.  相似文献   

13.
Resonant Magnetic Field Sensor With Frequency Output   总被引:1,自引:0,他引:1  
This paper presents a novel type of resonant magnetic field sensor exploiting the Lorentz force and providing a frequency output. The mechanical resonator, a cantilever structure, is embedded as the frequency-determining element in an electrical oscillator. By generating an electrical current proportional to the position of the cantilever, a Lorentz force acting like an additional equivalent spring is exerted on the cantilever in the presence of a magnetic field. Thus, the oscillation frequency of the system, which is a function of the resonator's equivalent spring constant, is modulated by the magnetic field to be measured. The resonant magnetic field sensor is fabricated using an industrial CMOS process, followed by a two-mask micromachining sequence to release the cantilever structure. The characterized devices show a sensitivity of 60 kHz/Tesla at their resonance frequency$f_0= 175~ kHz$and a short-term frequency stability of 0.025 Hz, which corresponds to a resolution below 1$~mu T$. The devices can thus be used for Earth magnetic field applications, such as an electronic compass. The novel resonant magnetic field sensor benefits from an efficient continuous offset cancellation technique, which consist in evaluating the frequency difference measured with and without excitation current as output signal. 1676  相似文献   

14.
A novel dual-mass resonant output micromechanical gyroscope is proposed which utilizes resonant sensing as the basis for Coriolis force detection instead of displacement sensing. It can overcome the shortcoming of single-mass resonant output micromechanical gyroscope and can reduce the common mode acceleration error by using a dual-mass topology structure and lever differential mechanism. The structure and operating principle of the device are introduced. Moreover, some important theoretical analyses of the gyroscope are provided in detail. The analytical results have shown that the resonant frequencies of vibrating mass and double-ended tuning fork resonators are 3.153 and 62.853 kHz. The device has a frequency sensitivity of 12.535 Hz/deg/s and a mechanical noise floor of $ 7.957\deg /{\text{h}}/\sqrt {{\text{Hz}}} A novel dual-mass resonant output micromechanical gyroscope is proposed which utilizes resonant sensing as the basis for Coriolis force detection instead of displacement sensing. It can overcome the shortcoming of single-mass resonant output micromechanical gyroscope and can reduce the common mode acceleration error by using a dual-mass topology structure and lever differential mechanism. The structure and operating principle of the device are introduced. Moreover, some important theoretical analyses of the gyroscope are provided in detail. The analytical results have shown that the resonant frequencies of vibrating mass and double-ended tuning fork resonators are 3.153 and 62.853 kHz. The device has a frequency sensitivity of 12.535 Hz/deg/s and a mechanical noise floor of 7.957deg/\texth/?{\textHz} 7.957\deg /{\text{h}}/\sqrt {{\text{Hz}}} in air. The finite element simulation results verify the accuracy of analytical algorithms. The common mode acceleration error of device can be reduced by 97.6%. The device is fabricated by SOG (Silicon on Glass) micro fabrication technology. Some important performances are measured by experimental method. The micromechanical gyroscope can be used to estimate the rotation rate by further implementing the signal processing electronics.  相似文献   

15.
This paper describes the design of miniature generators capable of converting ambient vibration energy into electrical energy for use in powering intelligent sensor systems. Such a device acts as the power supply of a microsystem which can be used in inaccessible areas where wires can not be practically attached to provide power or transmit sensor data. Two prototypes of miniature generator are described and experimental results presented. Prototype A is based around two magnets coupled to a coil attached to a cantilever; prototype B is based around four magnets.

For prototype A, experimental results are given for its resonant frequency and its open circuit and loaded output as a function of vibration amplitude. For prototype B, experimental results are given for the generator’s Q factor in air and vacuum, its output voltage as a function of vibration amplitude as well as its magnetic field strength. This generator has been tested on a car engine and shown to produce a peak power of 3.9 mW with an average power of 157 μW.  相似文献   


16.
We propose the improved configurations with dual‐mode dual‐square‐loop resonators (DMDSLR) for quad‐band bandpass filter (BPF) design. The modified DMDSLR filter employs two sets of the loops. The square loop is designed to operate at the first and third resonated frequencies (2.4/5.22 GHz) and the G‐shaped loop is employed at the second and fourth resonated frequencies (3.59/6.6 GHz). The resonant frequency equations of DMDSLR are introduced for simply designing quad‐band BPF. Resonant frequencies can be controlled by tuning the perimeter ratio of the square loops. A systematic design procedure with the design map is applied for accuracy design. To obtain lower insertion loss, higher out‐of‐band rejection level and wider bandwidth of quad‐band, the miniaturized DMDSLR with meander‐line technique is proposed. The proposed filters are successfully simulated and measured showing frequency responses and current distributions. It can be applied to WLAN and WiMAX quad‐band systems. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:332–340, 2014.  相似文献   

17.
Microfluidic magnetophoresis is an effective technique to separate magnetically labeled bioconjugates in lab-on-a-chip applications. However, it is challenging and expensive to fabricate and integrate microscale permanent magnets into microfluidic devices with conventional methods that use thin-film deposition and lithography. Here, we propose and demonstrate a simple and low-cost technique to fabricate microscale permanent magnetic microstructures and integrate them into microfluidic devices. In this method, microstructure channels were fabricated next to a microfluidic channel and were injected with a liquid mixture of neodymium (NdFeB) powders and polydimethylsiloxane (PDMS). After the mixture was cured, the resulted solid NdFeB–PDMS microstructure was permanently magnetized to form microscale magnets. The microscale magnets generate strong magnetic forces capable of separating magnetic particles in microfluidic channels. Systematic experiments and numerical simulations were conducted to study the geometric effects of the microscale magnets. It was found that rectangular microscale magnets generate larger \(({\mathbf {H}}\cdot \nabla ) {\mathbf {H}}\) which is proportional to magnetic force and have a wider range of influence than the semicircle or triangle magnets. For multiple connected rectangular microscale magnet, additional geometric parameters, including separation distance, height and width of the individual elements, further influence the particle separation and were characterized experimentally. With an optimal size combination, complete separation of yeast cells and magnetic microparticles of similar sizes (\(4\;\upmu \hbox {m}\)) was demonstrated with the multi-rectangular magnet microfluidic device.  相似文献   

18.
大跨度斜拉桥通常采用密索体系,拉索的振动频率非常接近,同时拉索之间也可能存在倍频关系.因此,可能存在索与索之间的相互耦合振动.索是斜拉桥的重要承重构件,对多索-单梁的动力学特性进行研究至关重要.本文考虑到索梁、索塔及塔梁的边界条件和连接点处的连接条件,基于Hamilton变分原理,建立了多索-单梁结构的运动微分方程.经过无量纲化处理,根据分离变量法,得到了其降维约化后的运动微分方程.本文取相邻的两根索考虑两种工况模型,对不同工况下的双索-单梁耦合结构的动力学行为进行了参数分析.研究发现,不同于以往资料中的“频率转向”现象,在本文中,两条频率曲线在频率值接近处,并未迅速分离,而是在相对一小段参数范围内继续保持平行且相互靠近,随后再迅速分离.最后,研究了双索-单梁耦合结构的非线性特性,分别对结构进行了两自由度和单自由度离散,研究发现,结构单模态假设在非共振区域能反映结构的非线性特性,但是在共振区域,结构的非线性特性会发生跳跃变化,应用2自由度模态理论进行研究更为准确.  相似文献   

19.
采用复合磁电换能器的振动能量采集器研究   总被引:1,自引:0,他引:1  
采用Teffenol-D/PZT/Terfenol-D复合磁电换能器,设计了一种新型振动能量采集器.采集器由悬臂梁、磁电换能器和永磁体三部分组成,环境振动引起换能器与永磁体相对运动,使得作用到换能器的磁场变化,变化的磁场引起Tedenol-D产生应变,应变传递到PZT得到电输出.采用等效磁荷理论分析了影响换能器与永磁体相对运动的磁场力;并用林滋泰德-庞加莱法分析了永磁体的非线性运动情况.实验结果表明,在振动激励频率为33 Hz,加速度为0.5 gn时,输出电压峰峰值45.1 V,输出功率112.1μW.  相似文献   

20.
The design of a compact modified octahedron shaped dual band notched ultra wide‐band antenna is presented in this article. The impedance bandwidth of the designed antenna has been enhanced by modifying the shape of the radiator by introducing fractal geometry and a modified ground plane. The proposed antenna offered an impedance bandwidth of 2.4 GHz–19.5 GHz (156% Fractional bandwidth). Two rectangular split ring resonator structures are introduced in the radiator to achieve two notched bands which ranges from 3.3 GHz to 3.7 GHz (WiMAX) and 5.15 GHz–5.85 GHz (WLAN) band. The antenna gain varies from 1 to 4 dBi over the operating band except the notched bands. The overall dimension of the designed antenna has a compact size of 33 × 40 mm2. The experimental and simulation results are in good agreement. The proposed antenna has wider bandwidth and smaller dimension over the already reported in the literature. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:426–434, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号