首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
In this article, we report on the microstructure and mechanical properties of Ce- and Y-containing Sn-3.9Ag-0.7Cu solders. The microstructures of both as-processed solder and solder joints containing rare-earth (RE) elements (up to 0.5 wt pct) are more refined compared to conventional Sn-3.9Ag-0.7Cu, with decreases in secondary Sn dendrite size and spacing and a thinner Cu6Sn5 intermetallic layer at the Cu/solder interface. These results agree well with similar observations seen in La-containing solders reported previously. The monotonic shear behavior of reflowed Sn-3.9Ag-0.7Cu-X(Ce, Y)/Cu lap shear joints was studied as well as the creep behavior at 368 K (95 °C). The data were compared with results obtained for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-XLa alloys. All RE-containing alloys exhibited creep behavior similar to Sn-3.9Ag-0.7Cu. Alloys with Ce additions exhibited a small decrease in ultimate shear strength but higher elongations compared with Sn-Ag-Cu. Similar observations were seen in La-containing solders. The influence of the RE-containing intermetallics (CeSn3 and YSn3) that form in these alloys on the microstructural refinement, solidification behavior, and mechanical performance of these novel materials is discussed.  相似文献   

3.
The present study investigated the effects of indium (In) addition on the microstructure, mechanical properties, and melting temperature of SAC305 solder alloys. The indium formed IMC phases of Ag3(Sn,In) and Cu6(Sn,In)5 in the Sn-rich matrix that increased the ultimate tensile strength (UTS) and the hardness while the ductility (% EL) decreased for all In containing solder alloys. The UTS and hardness values increased from 29.21 to 33.84 MPa and from 13.91 to 17.33 HV. Principally, the In-containing solder alloys had higher UTS and hardness than the In-free solder alloy due to the strengthening effect of solid solution and secondary phase dispersion. The eutectic melting point decreased from 223.0°C for the SAC305 solder alloy to 219.5°C for the SAC305 alloy with 2.0 wt% In. The addition of In had little effect on the solidus temperatures. In contrast, the liquidus temperature decreased with increasing In content. The optimum concentration of 2.0 wt % In improved the microstructure, UTS, hardness, and eutectic temperature of the SAC305 solder alloys.  相似文献   

4.
Metallurgical, mechanical, and environmental factors all affect service reliability of lead-free solder joints and are under extensive study for preparation of the transition from Sn-Pb eutectic soldering to lead-free soldering in the electronic industry. However, there is a general lack of understanding about the effects of solidification conditions on the microstructures and mechanical behavior of lead-free solder alloys, particularly on the long-term reliability. This study attempts to examine the creep resistance of the Sn-Ag-Cu eutectic alloy (Sn-3.8Ag-0.7Cu, SAC387) with a variety of solidification conditions with cooling rates ranging from 0.3 °C/s to 17 °C/s. Results indicate that solidification conditions have a major influence on the creep resistance of SAC387 alloy; up to two orders of magnitude change in the steady-state creep rates were observed at low stress levels. An understanding of the mechanical property change with microstructures, which are determined by the solidification conditions, should shed some light on the fundamental deformation and fracture mechanisms of lead-free solder alloys and can provide valuable information for long-term reliability assessment of lead-free solder interconnections. This article is based on a presentation made in the symposium entitled “Solidification Modeling and Microstructure Formation: in Honor of Prof. John Hunt,” which occurred March 13–15, 2006 during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the TMS Materials Processing and Manufacturing Division, Solidification Committee.  相似文献   

5.
A detailed investigation of the effects of microstructural changes on the mechanical behavior of twoin situ intermetallic composites with Cr and Cr2Hf phases in the Cr-Hf system was performed. The nominal compositions (at. pct) of the alloys were Cr-5.6Hf (hypoeutectic) and Cr-13Hf (eutectic). The study included evaluations of strength, ductility, and fracture toughness as a function of temperature and creep behavior. Two microstructures in each alloy were obtained by heat treatments at 1250 ‡C (fine microstructure) and 1500 ‡C (coarse microstructure). A decrease in elastic strength (stress at the onset of inelastic response in the load-deflection curve) with the coarsening of the microstructures was noted for both alloys below 1000 ‡C. The Cr-13Hf alloy retained strength to a higher test temperature, relative to Cr-5.6Hf alloy, under both microstructural conditions. The alloys showed no evidence of ductility at room temperature. However, in the coarse microstructure of the Cr-5.6Hf alloy, the primary Cr exhibited ductility at and above 200 ‡C; ductility in primary Cr could be seen only at and above 1000 ‡C for the fine microstructure. In other words, the temperature at which ductility was first observed decreased from about 1000 ‡C to about 200 ‡C due to high-temperature heat treatment in this alloy. Both microstructures of Cr-5.6Hf alloy showed a significant increase in fracture toughness with increasing test temperature. However, the increases in fracture toughness with temperature for the Cr-13Hf alloy microstructures were relatively small. Both alloys showed about four orders of magnitude reduction in steady-state creep rates relative to pure Cr at 1200 ‡C. The results are analyzed in the light of deformation characteristics and fracture micromechanisms. The effects of microstructural factors, such as the size and continuity of phases, solubility levels of Hf as well as interstitial elements in Cr, on the observed mechanical behavior are discussed. Formerly Research Scientist, Materials and Processes, UES, Inc.  相似文献   

6.
The effect of Nb on the properties and microstructure of two novel powder metallurgy (P/M) Ni-based superalloys was evaluated, and the results critically compared with the Rolls-Royce alloy RR1000. The Nb-containing alloy was found to exhibit improved tensile and creep properties as well as superior oxidation resistance compared with both RR1000 and the Nb-free variant tested. The beneficial effect of Nb on the tensile and creep properties was due to the microstructures obtained following the post-solution heat treatments, which led to a higher γ′ volume fraction and a finer tertiary γ′ distribution. In addition, an increase in the anti-phase-boundary energy of the γ′ phase is also expected with the addition of Nb, further contributing to the strength of the material. However, these modifications in the γ′ distribution detrimentally affect the dwell fatigue crack-growth behavior of the material, although this behavior can be improved through modified heat treatments. The oxidation resistance of the Nb-containing alloy was also enhanced as Nb is believed to accelerate the formation of a defect-free Cr2O3 scale. Overall, both developmental alloys, with and without the addition of Nb, were found to exhibit superior properties than RR1000.  相似文献   

7.
The intermediate-temperature (650 °C to 760 °C) creep behavior of orthorhombic (O)+bcc alloys containing 50 at. pct Ti was studied. Ti-25A1-25Nb, Ti-23Al-27Nb, and Ti-12Al-38Nb ingots were processed and heat treated to obtain a wide variety of microstructures. Creep deformation mechanisms and the effects of grain size, phase volume fraction, tension vs compression and aging on creep rates were examined. Unaged microstructures, which transformed during the creep experiments, exhibited larger primary creep strains than transformed microstructures, which were crept after long-term aging. The deformation observations and calculated creep exponents and activation energies suggested that separate creep mechanisms, dependent on the applied stress level, were dominating the secondary creep behavior. Coble creep characteristics, including relatively low activation energies and dislocation densities as well as stress exponents close to unity, were exhibited at low applied stresses. Experiments on fiducially marked specimens indicated that grain-boundary sliding was occurring for intermediate applied stresses. In this regime, the minimum creep rates were proportional to the applied stress squared and inversely proportional to the grain size. Dislocation-controlled creep characteristics, including stress exponents of greater than or equal to 3.5 and relatively high activation energies and dislocation densities, were exhibited at high stresses. Overall, the minimum creep rates were dependent on microstructure and stress. Within the low-to-intermediate stress regimes, subtransus processed and heat-treated microstructures, which contained much finer grain sizes than supertransus microstructures, exhibited the poorest creep resistance. The influence of grain size was not as significant within the high-stress regime. It is shown that for low-to-intermediate stress levels, grain size is the dominant microstructural feature influencing the creep behavior of O+bcc alloys.  相似文献   

8.
The mechanical behavior of Sn-rich solder/Cu joints is highly sensitive to processing variables such as solder reflow time, cooling rate, and subsequent thermal aging. In this article, we focus on the lap shear behavior of Sn-3.5Ag/Cu joints as a function of solder yield strength and intermetallic thickness. Experimental results showed that the shear strength of the solder joints is primarily controlled by the mechanical properties of the solder, and not the intermetallic thickness. The thickness of intermetallic, however, controlled the fracture mode of the solder joints. At intermetallic thicknesses greater than 20 μm, brittle fracture between Cu6Sn5 and Cu3Sn was the most common failure mechanism. Finite-element simulations were carried out to evaluate the effect of solder properties and of intermetallic thickness and morphology on lap shear behavior. The finite-element simulations corroborated the experimental findings, i.e., that increased solder strength results in increased joint strength. The simulations also showed that thicker intermetallics, especially of nodular morphology, yielded higher local plastic shear strain and work hardening rate.  相似文献   

9.
The creep rate of Sn solder joints is noticeably affected by joint metallization. Cu|Sn|Cu joints have significantly higher creep rates than Ni|Sn|Cu joints, which, in turn, have higher creep rates than Ni|Sn|Ni joints. Replacing Ni by Cu on both substrates increases the creep rate at 333 K (60 °C) by roughly an order of magnitude. The increased creep rate appears with no apparent change in the dominant creep mechanism; the change in the constitutive equation for creep (the Dorn equation) is in the pre-exponential factor. The decreased creep rate on substituting Ni is accompanied by an increase in the hardness of the polygranular solder but a decrease in the nanohardness of the grain interiors. The source of the strong influence of the Ni substrate appears to be the introduction of an array of Ni3Sn4 intermetallic precipitates along the grain boundaries. These precipitates inhibit grain boundary sliding, boundary reconfiguration, and grain growth during creep. The intermediate creep rate of the asymmetric Ni|Sn|Cu joint has two causes: a decrease in grain boundary mobility due to precipitate decoration and a restriction in the free volume of the joint due to rapid intermetallic growth from the substrate on the Ni side. The sources of this anomalous intermetallic growth are discussed.  相似文献   

10.
The Sn-8Zn-3Bi and Sn-9Zn-Al Pb-free solders were used to mount passive components onto printed circuit boards (PCBs) with electroless Ni immersed Au (ENIG) finishing layers using a reflow soldering process. The component mounted boards were aged at 150 °C for 200 to 1100 hours. The interfacial reactions and microstructure of the interfaces between the solders and the pads were observed using scanning electron microscopy and energy-dispersive spectrometry (EDS). Both solder joints on the two pads had similar interfacial microstructures; i.e., a very thin γ 2-AuZn3 layer was formed at the interface of the solder and Ni-P layer. The γ 2-AuZn3 layer transformed to an ε-AuZn8 intermetallic compounds (IMC) with a consistent thickness during aging. Zinc atoms redeposited onto the IMC layer increased with increasing aging time. After aging at 150 °C for various times, the shear strengths of the ENIG and organic solderability preservative (OSP) joints were evaluated. The shear strength of the Sn-8Zn-3Bi solder joint was better than that of the Sn-9Zn-Al solder joint. All of the solder joints deteriorated after aging; however, the degradations of the OSP solder joints were more evident than those of the ENIG solder joints.  相似文献   

11.
12.
Finite element simulations of the high-temperature behavior of single-phase γ, dual-phase α2+γ, and fully lamellar (FL) α2+γTiAl intermetallic alloy microstructures have been performed. Nonlinear viscous primary creep deformation is modeled in each phase based on published creep data. Models were also developed that incorporate grain boundary and lath boundary sliding in addition to the dislocation creep flow within each phase. Overall strain rates are compared to gain an understanding of the relative influence each of these localized deformation mechanisms has on the creep strength of the microstructures considered. Facet stress enhancement factors were also determined for the transverse grain facets in each model to examine the relative susceptibility to creep damage. The results indicate that a mechanism for unrestricted sliding of γ lath boundaries theorized by Hazzledine and co-workers leads to unrealistically high strain rates. However, the results also suggest that the greater creep strength observed experimentally for the lamellar microstructure is primarily due to inhibited former grain boundary sliding (GBS) in this microstructure compared to relatively unimpeded GBS in the equiaxed microstructures. The serrated nature of the former grain boundaries generally observed for lamellar TiAl alloys is consistent with this finding.  相似文献   

13.
The development of microstructure and its influence on creep properties have been studied for structures including equiaxed γ, duplex, and other structures of varying α2 morphology in two Ti-48Al-2Cr-2Nb alloys. Heat treatment at 1125°C have been utilized to produce equiaxed γ microstructures in alloys with or without Mo additions. The γ→α transformation produces α2 plates with several orientation variants with γ grains during subsequent annealing of the equiaxed γ microstructures below the α transus. Formation of this α2 morphology results from rapid up-quenching (UQ), and this structure persists through annealing, cooling, and creep testing. Differences in minimum creep rates for several microstructures, containing varying amounts of multi-or single variant γ/α2 grains are shown to be minimal. The presence of Mo has also resulted in improved creep resistance in equiaxed γ and γ + α2 + B2 structures, as compared to similar microstructures in the Ti-48Al-2Cr-2Nb alloy. Deformation during creep at 760 °C at stresses between 200 and 400 MPa occurs by a combination of twinning and dislocation glide without recrystallization, resulting in power-law stress exponents in the range of 6 to 9. Only minimal strain path dependence of the minimum creep rate is detected in a comparison of creep rates in stress jump, stress drop, and single stress tests. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlandom, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

14.
The chemistry and microstructure of iron-base alloys resistant to galling wear were determined by using optical microscopy and scanning electron microscopy (SEM). Castings and weld overlays, deposited by the gas tungsten arc and plasma arc welding (GTAW and PAW, respectively) processes, were evaluated. The microstructure typically consisted of a primary austenitic matrix, eutectic carbides (M7C3 type), and noneutectic carbides. Processing techniques that resulted in high cooling rates yielded microstructures with finer features, less complete partitioning of alloying elements to the carbides, and improved resistance to galling wear. Carbon and manganese appeared to improve resistance to galling wear. Nickel was detrimental to galling wear resistance. Formerly with AMAX Materials Research Center Formerly with AMAX Materials Research Center Formerly with AMAX Materials Research Center  相似文献   

15.
Effect of small addition of rare earth on Sn-Ag-Cu solder was investigated by finite element method based on creep model of low stress and high stress and experiments respectively. It was found that addition of rare earths evidently improved the resistance to creep deformation of the solder, so that the reliability of Sn-Ag-Cu-Ce solder joint could be improved remarkably. Mechanical testing and microstructural analysis results showed that, mechanical properties of alloys bearing Ce were better than that of the original alloy, and the optimum content of Ce was about 0.03wt.%. After aging intermetallic compound between solder joint and Cu substrate was observed and analyzed by X-ray diffraction (XRD), scanning electron micrographs (SEM) and energy dispersive X-ray fluorescence spectrometer (EDX). Results showed that the thickness of intermetallic compound layer would became thinner when the addition of Ce was about 0.03wt.%, and the grains of intermetallic compound became finer, and the microstructure was more homogeneous than that in the original Sn-Ag-Cu/Cu interface.  相似文献   

16.
Good candidates to replace the conventional titanium alloys and nickel-based superalloys currently employed in gas turbine engines are the titanium aluminides. These ordered structures are attractive because of their good modulus retention at high temperatures, low densities, and improved creep resistance. The purpose of this research was to investigate how the micro- structure of the titanium aluminide, Ti-24Al-11Nb (at. pct), influences the creep rate. Study of the stress dependence of the steady-state creep rate has shown that microstructures with a coarse α2 lath size, in general, display improved creep resistance over fine-lathed structures. Specimens with an equiaxed α2-phase microstructure exhibit much greater creep rates at all stresses and temperatures, implying that dislocation slip length, proportional to α2 phase dimension, does not always control creep in these materials and that texture may adversely affect creep resis- tance. When microstructures and dislocation substructures were investigated by transmission electron microscopy (TEM), observations of crept specimens indicated that the majority of dis- locations have a-type Burgers vectors and are located in the α2 phase. Formerly Graduate Student, Carnegie Mellon University  相似文献   

17.
18.
The development of microstructure and its influence on creep properties have been studied for structures including equiaxed γ, duplex, and other structures of varying α 2 morphology in two Ti-48Al-2Cr-2Nb alloys. Heat treatments at 1125 °C have been utilized to produce equiaxed γ microstructures in alloys with or without Mo additions. The γα transformation produces α 2 plates with several orientation variants within γ grains during subsequent annealing of the equiaxed γ microstructures below the α transus. Formation of this α 2 morphology results from rapid up-quenching (UQ), and this structure persists through annealing, cooling, and creep testing. Differences in minimum creep rates for several microstructures containing varying amounts of multi- or single variant γ/α 2 grains are shown to be minimal. The presence of Mo has also resulted in improved creep resistance in equiaxed γ and γ+α 2+B2 structures, as compared to similar microstructures in the Ti-48Al-2Cr-2Nb alloy. Deformation during creep at 760 °C at stresses between 200 and 400 MPa occurs by a combination of twinning and dislocation glide without recrystallization, resulting in power-law stress exponents in the range of 6 to 9. Only minimal strain path dependence of the minimum creep rate is detected in a comparison of creep rates in stress jump, stress drop, and single stress tests. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

19.
The microstructure and creep behavior of a high-pressure die-cast AE44 (Mg-4Al-4RE) alloy have been studied. The creep properties were evaluated at 423?K and 448?K (150?°C and 175?°C) under stresses in the range 90 to 110?MPa. The microstructures before and after creep were examined by transmission electron microscopy (TEM). After creep, AE44 exhibits anomalously high stress exponents (n ?= 67 at 423?K [150?°C] and n ?= 41 at 448?K [175?°C]) and stress-dependant activation energies ranging from 221 to 286?kJ/mol. The dislocation substructure developed during creep is characterized by extensive nonbasal slip and isolated but well-defined subgrain boundaries. It is shown that the anomalously high stress exponents cannot be rationalized by the threshold stress approach that is commonly adopted in analyzing the creep behavior of dispersion-strengthened alloys or metal matrix composites. A comparison in creep resistance is also made between AE44 and AE42 (Mg-4Al-2RE).  相似文献   

20.
The microstructure and creep behavior of a cast Mg-5Sn alloy with 1, 2, and 3 wt pct Bi additions were studied by impression tests in the temperature range 423 K to 523 K (150 °C to 250 °C) under punching stresses in the range 125 to 475 MPa for dwell times up to 3600 seconds. The alloy containing 3 wt pct Bi showed the lowest creep rates and, thus, the highest creep resistance among all materials tested. This is attributed to the favorable formation of the more thermally stable Mg3Bi2 intermetallic compound, the reduction in the volume fraction of the less stable Mg2Sn phase, and the dissolution of Bi in the remaining Mg2Sn particles. These particles strengthen both the matrix and grain boundaries during creep deformation of the investigated system. The creep behavior of the Mg-5Sn alloy can be divided into the low- and high-stress regimes, with the respective average stress exponents of 5.5 and 10.5 and activation energies of 98.3 and 163.5 kJ mol−1. This is in contrast to the creep behavior of the Bi-containing alloys, which can be expressed by a single linear relationship over the whole stress and temperature ranges studied, yielding stress exponents in the range 7 to 8 and activation energies of 101.0 to 107.0 kJ mol−1. Based on the obtained stress exponents and activation energies, it is proposed that the dominant creep mechanism in Mg-5Sn is pipe-diffusion controlled dislocation viscous glide the low-stress regime and dislocation climb creep with back stress in the high-stress regime. For the Mg-5Sn-xBi alloys, however, the controlling creep mechanism is dislocation climb with an additional particle strengthening effect, which is characterized by the higher stress exponent of 7 to 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号