首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: In eukaryotic cells, a specialized proteolysis machinery that targets proteins containing destruction-box sequences for degradation and that uses a ubiquitin ligase known as the anaphase-promoting complex/cyclosome (APC) plays a key role in the regulation of mitosis. APC-dependent proteolysis triggers the separation of sister chromatids at the metaphase-anaphase transition and the destruction of mitotic cyclins at the end of mitosis. Recently, two highly conserved WD40-repeat proteins, Cdc20 and Cdh1/Hct1, have been identified as substrate-specific regulators for APC-dependent proteolysis in the budding yeast Saccharomyces cerevisiae. Here, we have investigated the cell cycle regulation of Cdc20 and Cdh1/Hct1. RESULTS: Whereas the levels CDH1/HCT1 RNA and Cdh1/Hct1 protein are constant throughout the cell cycle, CDC20 RNA and Cdc20 protein are present only during late S phase and mitosis and Cdc20 protein is unstable throughout the entire cell cycle. The instability of Cdc20 depends on CDC23 and CDC27, which encode components of the APC. During the G1 phase, a destruction box within Cdc20 mediates its instability, but during S phase and mitosis, although Cdc20 destruction is still dependent on CDC23 and CDC27, it does not depend on the Cdc20 destruction box. CONCLUSIONS: There are remarkable differences in the regulation of Cdc20 and Cdh1/Hct1. Furthermore, the APC activator Cdc20 is itself a substrate of the Cdc27 have a role in the degradation of Cdc20 during S Phase and early mitosis that is not mediated by its destruction box.  相似文献   

2.
The dependence of mitosis on the completion of the period of DNA replication in the cell cycle [synthesis (S) phase] ensures that chromosome segregation occurs only after the genome has been fully duplicated. A key negative regulator of mitosis, the protein kinase Wee1, was degraded in a Cdc34-dependent fashion in Xenopus egg extracts. This proteolysis event was required for a timely entrance into mitosis and was inhibited when DNA replication was blocked. Therefore, the DNA replication checkpoint can prevent mitosis by suppressing the proteolysis of Wee1 during S phase.  相似文献   

3.
4.
The carboxyl terminus of p70 S6 kinase (p70(s6k)) has a set of Ser and Thr residues (Ser411, Ser418, Ser424, and Thr421) phosphorylated in vivo by an unidentified kinase(s). These Ser/Thr sites are immediately followed by proline, a motif that is commonly seen in the substrates of cyclin-dependent kinases (Cdk) and mitogen-activated protein kinases. A previous study has shown that Cdc2 (Cdk1) indeed phosphorylates these p70(s6k) Ser/Thr residues in vitro. Here, we demonstrate that Cdc2-cyclin B complex phosphorylates Ser411 in the KIRSPRR sequence, whereas other Cdk-cyclin complexes including those containing Cdk2, Cdk4, or Cdk6 do not. Additionally, Ser411 phosphorylation in vivo was increased at mitosis in parallel with Cdc2 activation, and it was suppressed by a dominant negative form of Cdc2. These data indicate that p70(s6k) is a physiological substrate of Cdc2-cyclin B in mitosis. Since the activity of p70(s6k) is low during mitosis, Cdc2-cyclin B may play a role in inactivating p70(s6k) during mitosis, where protein synthesis is suppressed.  相似文献   

5.
The Cdc7p protein kinase plays an essential, but undefined, role promoting S phase in the budding yeast, Saccharomyces cerevisiae. Previous experiments have shown that the essential function of Cdc7 is executed near the G1-S boundary; after Start but before the elongation phase of DNA replication. Origins of DNA replication fire throughout S phase in budding yeast. Therefore, the G1-S transition is a cell-cycle event that precedes, and is distinct from, the activation of individual origins. Consequently, we have asked whether Cdc7 is only required for S-phase entry or if it plays a role during S phase in origin firing. In this article, we show that partial loss of Cdc7 function results in slow progression through S phase rather than slow entry into S phase and that Cdc7 is still required for the timely completion of S phase after a block to elongation with hydroxyurea. This is because Cdc7 is still required for the activation of late-firing origins after the hydroxyurea block. These experiments show that, rather than acting as a global regulator of the G1-S transition, Cdc7 appears to play a more direct role in the firing of replication origins during S phase.  相似文献   

6.
We exploit an improved mammalian cell-free DNA replication system to analyse quiescence and Cdc6 function. Quiescent 3T3 nuclei cannot initiate replication in S phase cytosol from HeLa or 3T3 cells. Following release from quiescence, nuclei become competent to initiate semiconservative DNA replication in S phase cytosol, but not in G0 phase cytosol. Immunoblots show that quiescent cells lack Cdc6 and that minichromosome maintenance (MCM) proteins are not associated with chromatin. Competence of G1 phase nuclei to replicate in vitro coincides with maximum Cdc6 accumulation and MCM protein binding to chromatin in vivo. Addition of recombinant Cdc6 to permeabilized, but not intact, G1 nuclei causes up to 82% of the nuclei to initiate and accelerates G1 progression, making nuclei competent to replicate prematurely.  相似文献   

7.
8.
局域平衡原理与相图的扩散偶法测定   总被引:1,自引:0,他引:1  
介绍了局域平衡原理和扩散偶法测定平衡相图的方法要点.扩散偶法是一种高效的、可靠的相图测定方法,它可以大幅度减少实验工作量,减少原材料消耗,加快相图实测进程.此外,这种方法还具有可直接测定相平衡关系、相平衡成分,避免“过冷效应”等优点,特别适合于多组元系统平衡相图的实验测定.  相似文献   

9.
10.
11.
The fission yeast gene cdc18(+) is required for entry into S phase and for coupling mitosis to the successful completion of S phase. Cdc18 is a highly unstable protein that is expressed only once per cell cycle at the G1/S boundary. Overexpression of Cdc18 causes a mitotic delay and reinitiation of DNA replication, suggesting that the inactivation of Cdc18 plays a role in preventing rereplication within a given cell cycle. In this paper, we present evidence that Cdc18 is associated with active cyclin-dependent kinase in vivo. We have expressed Cdc18 as a glutathione S-transferase fusion in fission yeast and demonstrated that the fusion protein is functional in vivo. We find that the Cdc18 fusion protein copurifies with a kinase activity capable of phosphorylating histone H1 and Cdc18. The activity was identified by a variety of methods as the cyclin-dependent kinase containing the product of the cdc2(+) gene. The amino terminus of Cdc18 is required for association with cyclin-dependent kinase, but the association does not require the consensus cyclin-dependent kinase phosphorylation sites in this region. Additionally, both G1/S and mitotic forms of cyclin-dependent kinase phosphorylate and interact with Cdc18. These interactions between Cdc18 and cyclin-dependent kinases suggest mechanisms by which cyclin-dependent kinases could activate the initiation of DNA replication and could prevent rereplication.  相似文献   

12.
The cyclin proteolysis that accompanies the exit from mitosis in diverse systems appears to be essential for restoration of interphase. The early syncytial divisions of Drosophila embryos, however, occur without detectable oscillations in the total cyclin level or Cdk1 activity. Nonetheless, we found that injection of an established inhibitor of cyclin proteolysis, a cyclin B amino-terminal peptide, prevents exit from mitosis in syncytial embryos. Similarly, injection of a version of Drosophila cyclin B that is refractory to proteolysis results in mitotic arrest. We infer that proteolysis of cyclins is required for exit from syncytial mitoses. This inference can be reconciled with the failure to observe oscillations in total cyclin levels if only a small pool of cyclins is destroyed in each cycle. We find that antibody detection of histone H3 phosphorylation (PH3) acts as a reporter for Cdk1 activity. A gradient of PH3 along anaphase chromosomes suggests local Cdk1 inactivation near the spindle poles in syncytial embryos. This pattern of Cdk1 inactivation would be consistent with local cyclin destruction at centrosomes or kinetochores. The local loss of PH3 during anaphase is specific to the syncytial divisions and is not observed after cellularization. We suggest that exit from mitosis in syncytial cycles is modified to allow nuclear autonomy within a common cytoplasm.  相似文献   

13.
Mitotic fragmentation of the Golgi apparatus can be largely explained by disruption of the interaction between GM130 and the vesicle-docking protein p115. Here we identify a single serine (Ser-25) in GM130 as the key phosphorylated target and Cdc2 as the responsible kinase. MEK1, a component of the MAP kinase signaling pathway recently implicated in mitotic Golgi fragmentation, was not required for GM130 phosphorylation or mitotic fragmentation either in vitro or in vivo. We propose that Cdc2 is directly involved in mitotic Golgi fragmentation and that signaling via MEK1 is not required for this process.  相似文献   

14.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

15.
13S condensin is a multisubunit protein complex essential for mitotic chromosome condensation in Xenopus egg extracts. Purified 13S condensin introduces positive supercoils into DNA in the presence of topoisomerase I and adenosine triphosphate in vitro. The supercoiling activity of 13Scondensin was regulated by mitosis-specific phosphorylation. Immunodepletion, in vitro phosphorylation, and peptide-mapping experiments indicated that Cdc2 is likely to be the kinase that phosphorylates and activates 13S condensin. Multiple Cdc2 phosphorylation sites are clustered in the carboxyl-terminal domain of the XCAP-D2 (Xenopus chromosome-associated polypeptide D2) subunit. These results suggest that phosphorylation of 13Scondensin by Cdc2 may trigger mitotic chromosome condensation in vitro.  相似文献   

16.
The 26S proteasome is a large multisubunit complex involved in degrading both cytoplasmic and nuclear proteins. We have investigated the localization of this complex in the fission yeast, Schizosaccharomyces pombe. Immunofluorescence microscopy shows a striking localization pattern whereby the proteasome is found predominantly at the nuclear periphery, both in interphase and throughout mitosis. Electron microscopic analysis revealed a concentration of label near the inner side of the nuclear envelope. The localization of green fluorescent protein (GFP)-tagged 26S proteasomes was analyzed in live cells during mitosis and meiosis. Throughout mitosis the proteasome remained predominantly at the nuclear periphery. During meiosis the proteasome was found to undergo dramatic changes in its localization. Throughout the first meiotic division, the signal is more dispersed over the nucleus. During meiosis II, there was a dramatic re-localization, and the signal became restricted to the area between the separating DNA until the end of meiosis when the signal dispersed before returning to the nuclear periphery during spore formation. These findings strongly imply that the nuclear periphery is a major site of protein degradation in fission yeast both in interphase and throughout mitosis. Furthermore they raise interesting questions as to the spatial organization of protein degradation during meiosis.  相似文献   

17.
18.
The Rho-related small GTP-binding protein Cdc42 has a low intrinsic GTPase activity that is significantly enhanced by its specific GTPase-activating protein, Cdc42GAP. In this report, we present the tertiary structure for the aluminum fluoride-promoted complex between Cdc42 and a catalytically active domain of Cdc42GAP as well as the complex between Cdc42 and the catalytically compromised Cdc42GAP(R305A) mutant. These structures, which mimic the transition state for the GTP hydrolytic reaction, show the presence of an AIF3 molecule, as was seen for the corresponding Ras-p120RasGAP complex, but in contrast to what has been reported for the Rho-Cdc42GAP complex or for heterotrimeric G protein alpha subunits, where AIF4- was observed. The Cdc42GAP stabilizes both the switch I and switch II domains of Cdc42 and contributes a highly conserved arginine (Arg 305) to the active site. Comparison of the structures for the wild type and mutant Cdc42GAP complexes provides important insights into the GAP-catalyzed GTP hydrolytic reaction.  相似文献   

19.
The sulfidation of Fe-Cr alloys has a large financial significance for industries that use fossil fuels, such as the electric utility industry. Therefore, the sulfidation of a series of Fe-Cr alloys was studied at 600 °C using a solid-state diffusion couple technique. The diffusion couple technique combined Fe0.95S powder and FeCr binary alloys together in a configuration that allowed for post-heat-treatment microanalysis using an electron probe microanalyzer (EPMA). The results showed that only two different diffusion couple microstructures formed in samples spanning the entire Fe-Cr binary range. The Fe-rich alloy diffusion couples contained a surface αFeCr layer and an internal sulfide precipitate layer that contained three different sulfide phases. The Cr-rich alloy diffusion couples also possessed an internal precipitate layer, as well as a thick, triplex interfacial scale. The ternary elemental diffusion was described using diffusion paths plotted on the 600 °C isothermal section of the Fe-Cr-S phase diagram. The results also showed that samples with less than 51 wt Pct Cr were more sulfidation resistant. The accuracy of the existing Fe-Cr-S 600 °C isothermal section was assessed, and it was determined that the τ phase field had a larger composition than previously published.  相似文献   

20.
In the past decade, much of the research on adolescent development has focused on the transitions that define and shape the experiences of adolescents. Several models are identified that have been useful in predicting and understanding behavioral and affective change at transitions, in particular, transitions occurring from middle childhood through adolescence. Some models are specific to particular transition points ( such as pubertal development ), whereas others may be applied more generally, even if they have only been tested for at a single transition. Of importance is how well the data fit each model and whether continuity in outcomes is predicted by the models across different transitions. Examples highlight research on how a specific transition, event, or ecological niche influences adolescent behavior and affect. To understand which individuals are affected by transitions and how transitions are navigated, more specific models are needed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号