首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.948 6%、2.058 5%、2.533 1%,相比其他预测方法具有更高准确率。  相似文献   

2.
针对短期电力负荷预测精度不足的问题,提出一种基于变分模态分解、深度信念网络、差分自回归移动平均模型的组合预测模型。首先选取电力负荷影响较大的相关参数,采用变分模态分解将负荷数据分解为低频和高频两种分量;然后利用差分自回归移动平均模型和深度信念网络分别对低频和高频两种分量进行预测,为克服深度信念网络参数随机化的缺陷,采用粒子群优化算法优化模型以进一步提高精度;最后组合各模型结果得到最终预测值。实验结果表明,该组合模型较其他模型具有更好的预测性能。  相似文献   

3.
针对短期电力负荷预测中的不确定性和波动性问题,提出了一种计及误差补偿的两阶段短期电力负荷组合预测方法:第一阶段,采用变分模态分解将电力负荷数据分解为若干个简单模态,利用基于萤火虫扰动优化的麻雀搜索算法对双向长短时记忆神经网络的超参数进行寻优,建立负荷预测模型,得到初始负荷预测功率值;第二阶段,综合考虑误差序列以及外界影响因素,建立误差补偿模型,得到误差补偿值,将两个阶段的值相加即为最终的负荷预测结果。以两个地区小区的实际负荷数据进行算例仿真,与其他的组合预测方法相比,本研究提出的方法具有更高的预测精度,平均绝对百分比误差和均方根误差分别达到1.26%、16.20 kW,验证了所提方法的有效性。  相似文献   

4.
为了提高短期电力负荷预测的精度,提出一种基于极端梯度提升和长短期记忆网络的组合预测方法。首先采用Spearman相关系数法对负荷与气象因素进行相关性分析,提取模型输入特征。然后分别建立XGBoost、LSTM预测网络,并采用遗传算法优化网络的参数。最后利用模拟退火算法对各网络的预测结果分配最优权重系数,通过加权组合得到最终的集成预测结果。实验结果表明,XGBoost和LSTM组合模型对短期电力负荷预测的平均绝对百分比误差为0.88%,与XGBoost模型、LSTM模型相比,误差分别降低了2.17%、1.99%,在负荷预测领域更具有优势。  相似文献   

5.
为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sampleentropy,SE)确定;然后对比原始负荷与模态分量的SE值,重构为平稳分量和波动分量,来降低运算规模;同时利用皮尔逊相关系数来筛选特征变量,删除特征冗余,建立灰狼算法优化后的支持向量回归模型(GWO-SVR)和长短期记忆神经网络(LSTM)分别对平稳分量和波动分量预测;最后以某地区2018—2020年用电负荷为例进行实验。实验证明:此模型精准度高达94.7%,平均绝对百分误差降低到2.98%,具有更好的精准性和适用性。  相似文献   

6.
精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特征向量进行处理,去掉冗余信息,再用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将历史负荷分解为简化的几个子序列;其次,选择引入样本熵(sample entropy,SE)来计算子序列熵值,将相近的子序列重构得到随机、细节、低频和趋势分量后选用不同结构门控循环单元(gate recurrent unit,GRU)对不同分量类型进行预测,再使用极致梯度提升模型(extreme gradient boosting,XGBoost)对各分量残差进行拟合,各重组序列的预测值为GRU预测值与XBGoost拟合值之和,重组各序列得到最终预测值。选取3年时电力负荷数据进行实验,结果表明,所提模型的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolutepercentage error,MAPE)和平均绝对误差(mean absolute error,MAE)分别为370.676 MW、99.07%和246.89 MW,与单一模型和混合模型相比,实现了评价指标的明显减少。  相似文献   

7.
以小波分析理论为基础,研究分频段组合预测方法。选用db4小波函数将历史负荷序列进行最大尺度分解重构,根据不同频段负荷分量的特点,对低频分量用GM(1,1)预测,中频分量用时间序列法预测,高频分量用二次指数平滑法预测,然后将各频段分量的预测值叠加,得最终预测结果。以福建省某10 kV线路短期供电量及EUNITE竞赛数据为例,通过Matlab仿真程序,对比分析3种单一预测结果和分频段组合预测结果,结果表明,分频段组合预测效果明显优于单一预测,且具普遍性。最后,用某市局配电网短期负荷数据,验证分频段组合预测法是有效可行的。  相似文献   

8.
方娜  李俊晓  陈浩  李新新 《现代电力》2022,39(4):441-448
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。  相似文献   

9.
电力负荷曲线作为一种非平稳信号,可以看作由宽平稳的低频分量和非平稳的高频分量构成。针对负荷数据的时间多粒度构成特点,提出了一种基于变分模态分解和密度峰值快速搜索的负荷可控聚类模型。原始负荷曲线通过变分模态分解算法被分解为低频,中频和高频三个模态分量。首先,利用负荷曲线的低频模态分量实现簇间的时间粗粒度聚类。然后,在子类中添加中频分量实现簇内的时间细粒度聚类。使用OpenEI数据集对所提模型进行了有效性验证,并与不同聚类算法对原始负荷数据直接聚类进行对比。实验结果表明该模型可以实现不同时间颗粒度的合理聚类。  相似文献   

10.
为研究频域分量预测法对短期负荷预测精度的影响,利用频域分解算法分解原始负荷数据,将数据分解为4个部分:日周期、周周期、低频和高频分量。其中,日周期、周周期分量用Elman神经网络预测;低频分量采用随机森林预测;高频分量则使用Mallat算法二次分解,分别得到低频部分和高频部分,选取低频部分做训练样本与Elman神经网络结合预测高频分量;将各个频域分量结果重组,实现电力负荷的高精度预测。以某地市实际负荷数据为例进行仿真,将该方法与Elman神经网络法、随机森林法及频域分量预测法的预测结果对比,验证所提方法可以有效提高精度,减少预测值和真实值的离散程度。  相似文献   

11.
为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再分别建立高频混合神经网络以及低频混合神经网络模型进行预测。在混合神经网络模型中,将负荷特征数据作为BiGRU-NN网络的输入,利用BiGRU-NN网络学习负荷非线性以及时序性特征,以此进行短期负荷预测。文中以丹麦东部地区的负荷数据作为算例,实验结果表明,该方法与GRU神经网络、DNN神经网络、CNN-LSTM神经网络相比,具有更高的预测精度。  相似文献   

12.
基于灰色-辨识模型的风电功率短期预测   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确预测风电机组的输出功率,针对实际风场,给出一种基于灰色GM(1,1)模型和辨识模型的风电功率预测建模方法,采用残差修正的方法对风速进行预测,得出准确的风速预测序列。同时为了提高风电功率预测的精度,引入FIR-MA迭代辨识模型,从分段函数的角度对风电场实际风速-风电功率曲线进行拟合,取得合适的FIR-MA模型。利用该模型对额定容量为850 kW的风电机组进行建模,采用平均绝对误差和均方根误差,以及单点误差作为评价指标,与风电场的实测数据进行比较分析。仿真结果表明,基于灰色-辨识模型的风电机组输出功率预测方法是有效和实用的,该模型能够很好地预测风电机组的实时输出功率,从而提高风电场输出功率预测的精确性。  相似文献   

13.
短期电力负荷具有不平稳、随机性强等特点,传统的负荷预测方法在建模中常表现出一定的局限性。为提高预测精度,提出了一种基于互补集合经验模态分解(complement-ary ensemble empirical mode decomposition, CEEMD)、长短期记忆(long short-term memory, LSTM)神经网络和多元线性回归(multiple linear regression, MLR)方法组合而成的CEEMD-LSTM-MLR短期电力负荷预测方法。首先将电力负荷数据通过CEEMD分解为高频分量和低频分量;将复杂的高频分量通过经贝叶斯优化的LSTM神经网络进行预测,周期性的低频分量通过MLR方法进行预测,最后将各分量叠加重构得到最终预测结果。通过算例分析,一方面将不同分解方法进行对比,一方面将不同模型进行对比并探究贝叶斯调参对结果的影响,验证了所提模型更具可靠性与准确性。  相似文献   

14.
基于经验模态分解与特征相关分析的短期负荷预测方法   总被引:2,自引:0,他引:2  
提出了一种基于经验模态分解与特征相关分析的短期负荷预测新方法。该方法从分解负荷序列入手,采用经验模态分解将原始负荷时间序列分解成不同频率的本征模函数(IMF)分量和残差分量,以弱化复杂影响因素环境下原始序列的波动性,获取更具规律性的分量。然后运用最小冗余度最大相关性标准(mRMR)技术分析各IMF分量和日类型、天气、电价等特征信息之间的相关性,获得最佳特征集。最后采用基于智能算法的最小二乘支持向量机(LSSVM)负荷预测模型对各经验模态分量进行预测,并将各分量预测结果叠加得到最终负荷预测值。以某电网实际数据进行算例分析,结果表明所提出的组合模型能够更准确地对外部因素敏感的短期负荷进行预测。  相似文献   

15.
短期负荷预测在电力系统规划与运行中起着重要作用。提出一种融合注意力机制和分位数回归的混合卷积双向长短期神经网络短期负荷概率预测模型。首先,利用相关性分析选取合适的天气变量和历史负荷。其次,通过Copula模型计算出风险阈值,该值被用于构造峰值二进制指示输入特征。接着,将所选特征集输入到卷积双向长短期神经网络预测模型,引入注意力机制给予数据不同关注。然后,采用核密度估计对负荷进行概率预测。最后,使用平均绝对百分比误差和均方根误差对模型预测性能进行评估。仿真结果表明,该模型具有更高的预测精度。  相似文献   

16.
基于特征挖掘的ARIMA-GRU短期电力负荷预测   总被引:2,自引:0,他引:2  
针对短期电力负荷随机性较强、预测精度较低的问题,提出了一种基于混沌理论、变分模态分解VMD(variational modal decomposition)、整合移动平均自回归ARIMA(autoregressive integrated moving average)模型和门控循环单元GRU(gated recurr...  相似文献   

17.
针对风速时间序列的规律性和随机性双重特征,将小波分解和RBF神经网络相结合用于短期风速预测。针对小波分解用于风速信号的不同频率成份的趋势项提取,研究了基于小波分解后的分量RBF网络预测及综合问题,包括全部高频-低频分量组合预测、部分高频-低频分量组合预测,以及低频分量组合预测三种方法的预测性能和特点。分析了三种不同方法在短期风速预测中的应用效果。通过对不同时间、不同地点短期风速预测的研究发现,进行不同步数的预测时,只有选取合适的分解层数、合适的高频分量和低频分量组合,才能得到最优的预测效果。该结论对于将小波分解用于短期风速时间序列的预测具有一定的指导意义。  相似文献   

18.
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120 h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号