首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Natural antioxidants are added in very low amounts to protect a polypropylene (PP) matrix against thermo‐oxidative degradation during processing. Thus, PP is melt‐blended with caffeic, chlorogenic, trans‐ferrulic, and p‐coumaric acids, and also with flavone and 3‐hydroxyflavone at 0.1 wt% with respect to the PP matrix. Neat PP and PP blended with three traditional antioxidants are prepared for comparison. A complete structural, thermal, and mechanical characterization is conducted. Ferrulic acid and particularly caffeic acid increases the thermal stability, showing also the highest activation energy. The structural changes of PP‐based films due to the polymer thermal degradation at high temperature (i.e., 400 °C) followed by FTIR reveal that antioxidants effectively delay the thermal degradation process. The wettability and the mechanical performance are also studied to get information regarding the industrial application of such films. While caffeic acid provides a more flexible material, ferrulic acid provides higher water resistance. Finally, AFM‐QNM shows that PP with caffeic acid has the highest miscibility.  相似文献   

2.
The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
Blends of recycled polypropylene (PP) and starch (S) with the compositions polypropylene 83 wt%–starch 17 wt% (PP83/S17) (blend 1a), polypropylene 68.8 wt%–starch 31.2 wt% (PP 68.8/S 31.2) (blend 2a) and polypropylene 89.5 wt%–starch 10.5 wt% (PP 89.5/S 10.5) (blend 3a) were synthesized. Maleated polypropylene (MAPP) was used as a compatibilizer. The compositions of the compatibilized blends were PP73/S15/MAPP12 (blend 1b), PP55/S25/MAPP20 (blend 2b) and PP85/S10/MAPP5 (blend 3b). The occurrence of a reaction between MAPP and starch was studied using Fourier transform infrared analysis. Thermal and rheological properties such as the complex viscosity, storage and loss modulus of the blends with a compatibilizer were found to be higher than those of the blends without a compatibilizer. The compatibilized and uncompatibilized blends, as well as recycled PP, were characterized using differential scanning calorimetry, thermogravimetric analysis and cone-and-plate rheometry. The storage and loss modulus values of blend 3b were observed to be the best. The best compatibilizing effect was exhibited by blend 3b at a loading of 5 wt% MAPP because this compatibilizer content yielded the highest complex viscosity and visco-elastic behavior. The presence of a functional compatibilizer enhanced the interactions between starch and recycled PP, which was confirmed by a rise in the melt viscosity, storage modulus and thermal stability. These blends were also characterized in terms of their water uptake by performing water absorption tests. Blend 2b containing 20 % MAPP was observed to absorb the maximum amount of water at 25 °C.  相似文献   

4.
This work seeks to optimize the twin‐screw compounding of polymer‐clay nanocomposites (PCNs). Proportional amounts (3:1) of maleic anhydride functionalized polypropylene compatibilizer (PP‐g‐MA) and organically modified montmorillonite clay at clay loadings of 1, 3, and 5 wt% were melt‐blended with a polypropylene (PP) homopolymer using a Leistritz Micro 27 twin‐screw extruder. Three melt‐blending approaches were pursued: (1) a masterbatch of PP‐g‐MA and organoclay were blended in one pass followed by dilution with the PP resin in a second pass; (2) all three components were processed in a single pass; and (3) uncompatibilized PP and organoclay were processed twice. Both corotation and counterrotation operation were utilized to investigate the effect of screw rotation mode and sequence on organoclay exfoliation and dispersion. X‐ray diffraction was employed to characterize basal spacing; however, since rheology is known to be highly sensitive to mesoscale organoclay structure, it is an ideal tool to examine the relationship between the various processing methods and exfoliation and dispersion. A holistic analysis of rheological data demonstrates the efficacy of the masterbatch approach, particularly when compatibilizer and organoclay are blended in counterrotating mode followed by dilution with matrix polymer in corotating mode. POLYM. ENG. SCI., 47:898–911, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
The blends of the polypropylene (PP‐1) with various glass bead contents were prepared via melt blending. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated that the β crystal existed in PP‐1 and increased with increasing glass bead content up to 6 wt %. It was generally known that the stiffness of a polymer increased with introducing rigid particles, and the stiffness of the β crystal was less than that of the α crystal. This competing effect thus leads to the tensile modulus of PP‐1/glass bead blend decreasing with increasing glass bead content up to 6 wt %; thereafter, it increased with increasing glass bead content. For the purpose of comparison, the polypropylene (PP‐2) without the β crystal was employed to blend with glass bead. The tensile tests showed that the modulus of the PP‐2/glass bead blend increased continuously with increasing glass bead content. This result further supported that the tensile modulus behavior of PP‐1/glass bead blends resulted from the competing between the filled glass bead and the induced β crystal. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1729–1733, 2005  相似文献   

6.
The present study reports the dependence of the nano/micro‐structure and properties of polypropylene (PP)/ethylene vinyl acetate (EVA)/nanoclay ternary composites on the kinetics and thermodynamics of the melt‐mixing process. The size of dispersed EVA particles in the blends increased in the presence of the nanoclay particles, whereas in the ternary blend composites the size of the EVA dispersions decreased with increasing processing time. Intercalation and exfoliation were achieved more efficiently in ternary composites prepared with a longer EVA processing time. Moreover, the incorporation of the nanoclay particles within the EVA phase and interphase, as well as a long processing time stabilized the morphology. The degree of crystallinity, melting behavior, and crystallization temperature of PP in the ternary composites were not influenced by the presence of the nanoclay particles or by the duration of the melt‐mixing process. The thermal stability of the ternary composites improved with increasing melt‐mixing time. The rheological and thermomechanical properties were found to be dependent on the processing time and on the resulting structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45585.  相似文献   

7.
The isothermal crystallization behaviour of the polypropylene (PP) phase in PP/multi‐walled carbon nanotubes (MWCNTs) composites has been investigated via differential scanning calorimetric analysis, which showed the influence of the varying dispersion level of MWCNTs in the respective PP matrix. PP/MWCNTs composites were prepared via melt‐blending technique, wherein two different grades of MWCNTs of varying average “agglomerate” size and varying entanglements (N‐MWCNTs and D‐MWCNTs) were utilized. Furthermore, the influence of melt‐viscosity of the PP phase was investigated on the crystallization kinetics of the PP/MWCNTs composites. Heterogeneous nucleation ability of MWCNTs has resulted in a decrease in half time of crystallization (t 1/2) from ~14 min for pure PP to ~6 min for PP/N‐MWCNTs and ~11 min for PP/D‐MWCNTs composites at 1 wt% of MWCNTs at 132 °C. Overall rate of crystallization (k) has significantly increased to 4.9 × 10?2 min?1 for PP/N‐MWCNTs composite as compared with 6.2 × 10?3 min?1 for PP/D‐MWCNTs composite at 0.5 wt% of MWCNTs at 132 °C. Moreover, the effect of a novel organic modifier, Li‐salt of 6‐amino hexanoic acid along with a compatibilizer (PP‐g‐MA) has also been investigated on the crystallization kinetics of the PP phase in PP/MWCNTs composites. POLYM. ENG. SCI., 57:1136–1146, 2017. © 2017 Society of Plastics Engineers  相似文献   

8.
A novel crosslinkable supramolecular poly(cyclotriphosphazene) functionalized graphene oxide (FGO) is synthesized and melt‐processed with polypropylene (PP), which results in a PP composite with simultaneously improved flame retardancy, smoke‐suppression, and thermal and viscoelastic properties. The cone‐calorimetry test results reveal that the peak heat‐release rate and total heat release of the composite (2 wt% FGO) are reduced by 39.7% and 29.9%, respectively, compared to those of the neat PP. Meanwhile, the total smoke released and total smoke production of PP are significantly (42.7% and 34.9%, respectively) reduced after composite formation with 2 wt% FGO. Similarly, the PP/FGO composite shows an improved maximum weight loss temperature of 392.4 °C, compared to that of neat PP (361.4 °C). Thermogravimetric Fourier‐transform infrared spectroscopy (TG‐FTIR) analysis further confirms that the composite reduces the evolution of the flammable components and toxic gases, especially CO gas, indicating that the FGO significantly decreases the fire hazards of the PP. The thermomechanical and melt‐rheological analyses reveal that the composite has higher mechanical stiffness and viscoelastic properties than the neat polymer. In summary, FGO is shown to have potential as an advanced additive to obtain PP composites with multifunctional properties; however, higher FGO loading would be needed to improve UL‐94 rating from V‐2 to V‐0.  相似文献   

9.
Maleic anhydride grafted polypropylene (MA‐g‐PP) or polypropylene (PP) was noncovalently coated onto acid functionalized multiwall carbon nanotube (f‐MWNT) through solution mixing. These coated f‐MWNTs and pristine MWNT (p‐MWNT) were melt microcompounded with neat PP to form PP/f‐MWNT and PP/p‐MWNT nanocomposites at 0.1–1 wt% MWNT concentration. Complex viscosity and tan δ (ratio of loss modulus to storage modulus) behavior of these systems were studied using dynamic frequency sweep test, while relaxation time, activation energy, and melt homogeneity were also calculated and compared. Among the three types of samples, PP/f‐MWNT masterbatch‐based nanocomposite demonstrated not only the presence of interphase but also good processability. As a consequence, increase of both the crystallization rate in the presence of shear and the melt elasticity during annealing were found only in the masterbatch‐based samples but not in the PP/p‐MWNT. The mechanism of such increased melt elasticity was attributed to the formation of the space‐spanning network, which is consistent with the Cole–Cole plot showing similar behavior to the branched polymers in the literature. This has implications in polymer processing due to suggested changes in the balance between melt strength and polymer flow. Nanocomposite rheological behavior has also been correlated with the mechanical properties. POLYM. ENG. SCI., 59:1763–1777, 2019. © 2019 Society of Plastics Engineers  相似文献   

10.
Rice husk ash (RHA) is an agrowaste byproduct resulting from the incineration of rice husks for power production; white RHA is ∼90 wt% or more silica, which makes it a potentially sustainable and inexpensive substitute for commercial (less “green”) silica filler. Past research on polypropylene (PP)‐RHA hybrids made by melt processing has yielded modest increments in Young's modulus, reduced yield strength, and drastic reductions in elongation at break relative to neat PP. Using the industrially scalable solid‐state shear pulverization (SSSP) process, PP‐RHA hybrids are made with 4–38 wt% RHA. As determined by microscopy and other methods, composites made by SSSP have much better RHA dispersion than composites reported in the literature made by twin‐screw extrusion. The superior dispersion leads to major enhancements in tensile modulus (up to 100% increases relative to neat PP) while maintaining the yield strength of neat PP and remarkably high values of elongation at break (e.g., 520% at 19 wt% RHA), far higher than composites made by melt processing. The properties of hybrids made by SSSP are competitive with and in some cases superior to those of PP hybrids made with commercial silica. The PP‐RHA hybrids also exhibit major increases in hardness, approaching that of polycarbonate in the case of a 38 wt% RHA hybrid. The 38 wt% RHA hybrid exhibits solid‐like rheology at low frequency. Nevertheless, all PP‐RHA hybrids made by SSSP exhibit viscosities at moderate to high shear rates that are little changed from that of neat PP. POLYM. COMPOS., 34:1211–1221, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
The oscillatory shear rheological properties, mechanical performance, shrinkage, and morphology of polypropylene (PP)‐talc composites chemically coupled by maleic‐anhydride‐grafted polypropylene (MAPP) were studied. The samples were prepared in a co‐rotating L/D = 40, 25 mm twin‐screw extruder. Tensile tests carried out on injection‐molded samples showed a reinforcing effect of talc up to 20 wt% on PP. Upon using MAPP, the mechanical performance of PP‐30% talc showed a maximum of about 10% increase in tensile strength at 1.5 wt% of MAPP. A Newtonian plateau (η0) at the terminal zone was observed for the complex viscosity curve of pure PP and PP‐talc composites plotted against frequency up to 30 wt%. Upon increasing the talc content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that might be due to the formation of a network of filler agglomerates in the melt. Analysis of viscosity behavior in the power‐law region revealed that the flow behavior index‐n‐decreased from 0.45 for 10 wt% of talc down to about 0.4 for 40 wt% of talc. Upon increasing the talc content to 50 wt%, n decreased to a value even lower than that of the neat PP resin. The frequency of the crossover point represents molecular mobility and relaxation‐time behavior. The crossover frequency of the composites was nearly constant up to 30 wt% of talc and decreased at higher filler loadings. The optimum amount of coupling agent could be correlated with the minimum point in crossover frequency and crossover modulus. The shrinkage behavior of the composites with and without MAPP resin was studied and correlated with the rheological properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
Porous polymer films were generated by biaxial stretching of polypropylene (PP) and high‐density polyethylene (HDPE) filled with various amounts of calcium carbonate particles. The porosity of the films was measured by mercury porosimetry, and the obtained results were related to the processing conditions and to the morphology development during the biaxial stretching. The results showed that increasing the calcium carbonate (CaCO3) concentration and the draw ratio resulted in porosity increase for PP‐based composite films and in a decreased porosity in HDPE‐based composite films. Such peculiar behavior was connected to interfacial specific interactions between the matrix and the dispersed particles as well as to the crystallinity of the films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The differences that direct melt compounding and masterbatch dilution cause in the properties of melt compounded polypropylene (PP) and high density polyethylene‐based (PE‐HD) nanocomposites are presented. The results include comparison of properties and morphology of directly melt processed organoclay nanocomposites with similar compounds diluted from commercial and in‐house‐made masterbatches to clay concentrations of 1, 3, 6, and 8 wt%. The compounds were prepared with a co‐rotating Brabender twin‐screw extruder. The degree of exfoliation and the dispersion of the nanoclay were verified with transmission electron microscopy and X‐ray diffraction. Thermal stability of the materials was examined with thermogravimetric analysis and the mechanical properties of the compounded materials were also determined. The most promising results regarding mechanical behavior were achieved with the in‐house‐made masterbatch in the form of a notable increase in Young's modulus in both matrices. There was also a distinct increase in impact strength when masterbatch was used. Changes were more pronounced in case of PP. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
This study systematically investigates the polymer–carbon nanotube (CNT) interaction when the interphase is tailored. Maleic anhydride‐grafted‐polypropylene (MA‐g‐PP) or polypropylene (PP) was noncovalently coated onto acid functionalized multiwall nanotube (f‐MWNT) through solution mixing. These coated f‐MWNTs were melt microcompounded with neat PP to form PP/f‐MWNT nanocomposites. The effects of functional groups and the thin layer of solution processed polymers, namely, MA‐g‐PP or PP, at the PP/f‐MWNT interface on crystallization and on melting behavior of matrix PP were investigated. The results were compared with a pristine MWNT (p‐MWNT) incorporated system. It was shown that PP coated CNTs can serve as a strong nucleating agent for templated polymer crystal growth. Unlike other PP nanocomposites in the literature, a relatively high shift of 7°C in melting peak maximum (Tp), along with a sharp melt endotherm was achieved with the addition of 0.3 wt% f‐MWNT via PP/f‐MWNT master batch. This indicates refinement of matrix PP crystalline region due to the tailored f‐MWNT surface chemistry. With a designed self‐seeding and templated crystal growth approach, columnar crystalline interphases were found surrounding MWNT which melted at 10.5°C higher temperature than neat PP crystallized without undergoing the same heat treatment protocol. POLYM. ENG. SCI., 59:1570–1584 2019. © 2019 Society of Plastics Engineers  相似文献   

15.
This study aims to investigate the mechanical and physical properties of polypropylene (PP) filled by natural zeolite. For this purpose, a natural zeolite (at 1–6 wt% filler loadings) with two different particle sizes was used. Two different kinds of silane coupling agents (3‐aminopropyltriethoxysilane, GAPTES and 3‐glycidoxypropyltrimethoxysilane, GPTMS) at three different volume ratios were used to improve the zeolite compatibility with PP and to improve the mechanical properties of composites. Fillers and PP were compounded with a twin screw extruder, and the composites were moulded with injection moulding press. The samples were subjected to mechanical tests (i.e., impact and tensile tests) and physical tests (i.e., hardness, density, and melt flow index, MFI). The physical test results showed that the levels of hardness and density of both unmodified and modified zeolite‐filled PP composites were higher compared with neat PP. The MFI values of composites were decreased by increasing zeolite loading level. Composites including GAPTES modified zeolite showed improved yield strength, impact strength and stiffness compared with composites filled with unmodified zeolite particles. POLYM. COMPOS. 34:1396–1403, 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
Ultrafine full‐vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50–100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP‐g‐maleic anhydride (PP‐MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP‐MA endows the material with rheological characteristics of high melt strength materials like highly branched PP. The mechanism accounting for the rheological behaviors of binary blends and effectiveness of PP‐MA on PP/UFBR blends has been proposed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

17.
This paper investigates the extensional rheology (through melt strength measurement) of calcium carbonate (CaCO3) filled polypropylene (PP) melts. Different concentrations of CaCO3 filled PP were produced by mixing two master batches of pure PP and 70 wt% CaCO3 filled PP in required proportions in a counter‐rotating twin‐screw extruder. It was found that the melt strength of the CaCO3–PP melts was independent of CaCO3 concentrations up to 25 vol%. Further increase in CaCO3 concentration led to a severe reduction of melt strength. © 2002 Society of Chemical Industry  相似文献   

18.
The processing of ultrahigh molecular weight polyethylene (UHMWPE) by the addition of polypropylene (PP) and high‐density polyethylene (HDPE) was investigated. The results show that the addition of PP improves the processability of UHMWPE more effectively than does the addition of HDPE. UHMWPE/PP blends can be effectively processed with a twin‐roller and general single‐screw extruder. In the extrusion of UHMWPE/PP blends, PP is enriched at the surface of the blend adjacent to the barrel wall, thus increasing the frictional force on the wall; the conveyance of the solid down to the channel can then be carried out. The melt pool against the active flight flank exerts a considerable pressure on the UHMWPE powder in the passive flight flank, which overcomes the hard compaction of UHMWPE. The PP penetrates into the gaps between the particles, acting as a heat‐transfer agent and adhesive, thus enhancing the heat‐transfer ability in the material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 977–985, 2004  相似文献   

19.
An ethylene‐octene copolymer (POE)/polypropylene (PP) thermoplastic elastomer was prepared through dynamically crosslinking by 2,5‐dimethyl‐2,5‐dilbuty (Peroxy) hexane (DHBP). The effects of DHBP concentration, POE/PP ratio, melt flow index (MFI) of PP, and mixer rotation on rheology and morphology of the thermoplastic elastomer were studied. The results showed that with increasing DHBP concentration or POE content, the size of crosslinked particles as well as the melt viscosity increased. Furthermore, agglomerates or a network structure formed as the size of crosslinked particles increased. The melt viscosity also increased as MFI of PP decreased, while the size of crosslinked particles decreased under the same condition. Research on the morphology of dynamically crosslinked POE/PP thermoplastic elastomer flowing through a capillary rheometer at different shear rates show that the reprocessing had little effect on the morphology of dynamically crosslinked elastomer. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

20.
Rubber‐toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230 °C using a co‐rotating twin‐screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber‐toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X‐ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号