首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between the miscibility of acrylic pressure-sensitive adhesive (PSA) and the fracture energy (W) (Jm−2) of the probe tack was investigated, wherein the master curve of W was compared with that of the maximum force (σmax) (gf) of the probe tack. It was ascertained that W of acrylic PSA was closely related to the miscibility between the components (acrylic copolymer and tackifier resin). In the case of the miscible blend system, the master curve of W shifted toward the lower rate side and, at the same time, the magnitude decreased as the tackifier resin content increased. The degree of the shift of W was extremely smaller than that of σmax. In the case of the immiscible blend system, the master curve of W remarkably decreased as the tackifier resin content increased, which suggests the fact that W of the PSA depended on the dynamic mechanical properties of the matrix phase and that the resin-rich phase acted as a kind of filler, thus reducing the practical performance. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 581–587, 1998  相似文献   

2.
The influence of miscibility of an acrylic PSA and several tackifier resin systems upon PSA performance was investigated. When the acrylic copolymer and the resins were blended in various proportions, three types of mixing state were found: miscible system, partially miscible system and immiscible system. In the case of miscible systems, PSA performance (tack, peel strength and shear resistance) depended upon the viscoelastic properties of the PSA. In the case of completely immiscible systems, the above PSA performance depended primarily upon the viscoelastic properties of a continuous matrix phase, and the separated resin phase acted as a kind of filler. In the case of partially miscible systems, the PSA performance changed discontinuously at the resin concentration where phase separation occurred. It suggests that the phase structure of a PSA greatly influences the PSA's performance.  相似文献   

3.
The influence of miscibility of an acrylic PSA and several tackifier resin systems upon PSA performance was investigated. When the acrylic copolymer and the resins were blended in various proportions, three types of mixing state were found: miscible system, partially miscible system and immiscible system. In the case of miscible systems, PSA performance (tack, peel strength and shear resistance) depended upon the viscoelastic properties of the PSA. In the case of completely immiscible systems, the above PSA performance depended primarily upon the viscoelastic properties of a continuous matrix phase, and the separated resin phase acted as a kind of filler. In the case of partially miscible systems, the PSA performance changed discontinuously at the resin concentration where phase separation occurred. It suggests that the phase structure of a PSA greatly influences the PSA's performance.  相似文献   

4.
This article describes the development in the area of resin‐free acrylic pressure‐sensitive adhesive (PSA) based on 2‐ethylhexyl acrylate, methyl acrylate, acrylic acid, N‐vinyl caprolactam, and pregnancy transdermal drug delivery systems, and shows the variety of polymer composition, residue monomers content, quality control of peel adhesion level and repeating during the time, biocompatibility of the acrylic PSA layer, and efficacy in clinical medicine. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Different pressure‐sensitive adhesives (PSAs) based on acrylic monomers were synthesized under different reaction conditions. The synthesized PSAs have good adhesive properties and without leaving any residue can be easily peeled off from the surface of a substrate. The relationship between PSAs rheological behavior and its adhesion properties (e.g., peel, tack, and shear resistance) has been studied at constant adhesive thickness. The samples were examined for their surface energy and viscoelastic characteristics. It was observed that increase in reaction temperature and reaction time results in decreased storage modulus due to lowered molecular weight, which finally leads to lower elasticity of the PSA. While the storage (G′) and loss (G″) modulus of samples increase with increased initiator concentration, the elasticity of PSA is increased as well. High G″ at high frequency (100 Hz) represents high peel strength because of higher dissipation of viscoelastic energy during debonding. The tack values increase by lowering storage modulus at 1 Hz due to higher Me. Shear values are increased by higher storage modulus at low frequency (0.1 Hz) due to hydrogen bonding of the different components. Some parallel investigations on the surface energy of the samples showed that they have different properties because of the nature of different monomeric units with their corresponding orientations. Our results reveal that the peel strength is not affected by surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
This article shows radiation‐curable solvent‐free pressure‐sensitive adhesive polyacrylates, their synthesis, chemical modifications, important properties and use after crosslinking with UV‐lamps and UV‐lasers for the production of self‐adhesives tapes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 182–191, 2003  相似文献   

7.
Miscibility between acrylic copolymers and tackifier resins are investigated in terms of phase diagrams, and the probe tack of the blends are measured as a function of both temperature and rate of separation in order to obtain the master curves. It is found that the probe tack of the pressure sensitive adhesives are closely related to the miscibility between the components. The master curves of the miscible blends shift along the X(rate)-axis according to the change of Tg of the bulk materials with a gradual variation of the peak heights. However, those of the immiscible blends will not shift along the X(rate)-axis, but the magnitude will decrease with increase of a dispersed phase.  相似文献   

8.
A series of ethylene vinyl acetate copolymers (EVA) were blended with some tackifier resins that were made from wood extracts, and possible relations between their miscibility and properties as hot‐melt adhesives (HMA) were investigated. From our previous report on miscibility of various EVA‐based HMAs, we chose some blends that represent some of the typical miscibility types and investigated their peel strengths. When the blends were miscible at testing temperatures, the temperature at which the maximum value of peel strength was recorded tended to move toward higher temperature as tackifier content of blends increased. This result corresponds to the storage modulus of the blends whose curves tended to move toward higher temperature as tackifier content of blends increased when blend components were miscible as well as their maximum values of tan δ, or glass transition temperatures. It was characteristic for peel strength that there existed second peaks on peel strengths curves at ~ 100°C, which adhesive tensile strengths for the blends did not have. In terms of relationship between miscibility and HMA performances, we suggest that there are several factors other than miscibility that affect absolute values of peel strength more directly than miscibility; this idea has to be investigated further in the a future study. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 726–735, 2002  相似文献   

9.
Peel and shear strength of two grades of epoxidized natural rubber (ENR 25 and ENR 50)‐based pressure‐sensitive adhesive was studied. Coumarone‐indene resin was used as the tackifier, whereas toluene was chosen as the solvent throughout the experiment. The tackifier loading was varied from 0 to 80 parts per hundred parts of rubber (phr). A SHEEN hand coater was used to coat the adhesive on substrate to give a coating thickness of 30, 60, 90, and 120 μm. Peel strength and shear strength of the adhesive were determined by using a Lloyd adhesion tester and Texture analyzer, respectively. Results show that maximum peel strength occurs at 40 phr of coumarone‐indene resin for both ENRs studied an observation, which is attributed to the maximum wettability of the substrate. However, the shear strength shows a gradual decrease with increasing tackifier loading because of the decrease in cohesive strength of adhesive. ENR 25 consistently indicates higher peel strength and shear strength than ENR 50. Generally, peel and shear strength increases with coating thickness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007.  相似文献   

10.
Acrylic tackifier resins were prepared by free radical polymerization. A natural rubber base was prepared from Standard Malaysian Rubber through mechanical milling. The acrylic tackifier was blended with the rubber base in various ratios. The blends were coated onto strips of paper and tested for shear and peel strengths. Circular samples of the blends were cast onto release paper and their viscoelastic properties studied using DMTA. On plotting storage modulus G′ against frequency, differences between the low frequencies and high frequencies explain the change in pressure‐sensitive adhesive (psa) properties as the percentage of tackifier resin was varied. Blends with good psa have higher loss tangent at higher frequencies. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2118–2123, 2003  相似文献   

11.
医用丙烯酸酯乳液压敏胶的研制   总被引:1,自引:2,他引:1  
叙述了医用丙烯酸酯乳液压敏胶的合成与性能。并且讨论了软、硬单体配比,宫能单体含量及乳化剂用量等因素对压敏胶粘度、快粘力、持粘力、剥离强度等性能的影响。  相似文献   

12.
A series of ethylene vinyl acetate copolymers (EVA) were blended with some tackifier resins that are made from wood extracts, and possible relations between their miscibility and properties as hot‐melt adhesives (HMA) were investigated. From our previous report on miscibility of various EVA‐based HMAs, we chose some blends that represent some of typical miscibility types and measured their adhesive tensile strengths. When the blends were miscible at testing temperatures, the temperature at which the maximum value of adhesive tensile strength was recorded tended to move toward higher temperature as tackifier content of blends increased. This result corresponds to the glass transition temperature (Tg) of the blends that became higher as tackifier content of blends increased when blend components were miscible. In terms of HMA performances, we suggest that factors other than miscibility affect absolute values of adhesive tensile strength more directly than miscibility; this idea has to be investigated further in a future study. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 719–725, 2002  相似文献   

13.
Photoreactive solvent‐borne pressure‐sensitive adhesives are not commercially available in the market. The reason for it is that the UV‐initiated crosslinking has sense only in the case of solvent‐free self‐adhesive systems. Investigations conducted in Institute of Chemical Organic Technology have shown that the photoreactive solvent‐borne acrylic PSA are conventional crosslinked solvent‐borne acrylic PSA used as crosslinking agents typical metal chelates as titanium acetylacetonate (TiACA), aluminum acetylacetonate (AlACA) or thermal reactive crosslinker melamine‐formaldehyde resin Cymel 303 clear considered. The main purpose of the investigation was to study the influence of diverse photoinitiators on main properties, such as shrinkage, tack, peel adhesion, and shear strength of solvent‐based acrylic pressure‐sensitive adhesives. The interesting alternative to conventional photoinitiators is unsaturated photoinitiators described in this article. Following unsaturated photoinitiators were used: 4‐acryloyloxy benzophenone, 4‐acryloyloxyethoxy benzophenone, and 4‐acryloyloxybutoxy benzophenone. The influence of the crosslinking agents or crosslinking methods was determined in relation to the reaction time and to the concentration versus adhesion properties. The increase of photoinitiator concentration causes in the decrease of the shrinkage. Increasing the UV dose during the crosslinking of acrylic PSA film leads clearly to better shrinkage resistance. The best results of the lowest shrinkage value of 0.35% were given by using 4‐acryloyloxy benzophenone. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Hotmelt pressure sensitive adhesives (PSAs) usually contain styrenic block copolymers like styrene–isoprene–styrene (SIS), SBS, SEBS, tackifier, oil, and additives. These block copolymers individually reveal no tack. Therefore, a tackifier is a low molecular weight material with high glass transition temperature (Tg), and imparts the tacky property to PSA. The SIS block copolymer with different diblocks was blended with hydrogenated dicyclopentadiene (H‐DCPD tackifier), which has three kinds of Tg. PSA performance was evaluated by probe tack, peel strength, and shear adhesion failure temperature. PSA is a viscoelastic material, so that its performance is significantly related to the viscoelastic properties of PSAs. We tested the viscoelastic properties by dynamic mechanical analysis and the thermal properties by differential scanning calorimeter to investigate the relation between viscoelastic properties and PSA performance. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2839–2846, 2006  相似文献   

15.
Model acrylic pressure‐sensitive adhesives (PSAs) based on poly(2‐ethyl‐hexyl acrylate‐stat‐acrylic acid) and poly(n‐butyl acrylate‐stat‐acrylic acid) at 97.5/2.5 wt % were synthesized using semicontinuous emulsion and solution polymerizations. Microgels formed in the lattices retained their discrete network morphology in the film. In contrast, acrylic solution was essentially gel free and crosslinking in the film was provided by the reaction of acrylic acid and post added Al Acetyl Acetonate after solvent evaporation, which led to continuous network morphology. The difference in film network morphology caused significantly lower shear holding power for the film from emulsion PSA compared with that of solvent‐borne film. Unlike shear holding power, loop tack and peel of acrylic PSAs were mainly controlled by the same sol/gel molecular parameters, regardless of emulsion or solution PSAs. The important molecular parameters are sol‐to‐gel ratio, entanglement molecular weight, weight average molecular weight, and to a lesser extent, glass transition temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2230–2244, 2001  相似文献   

16.
This publication shows the synthesis of the water‐borne removable pressure‐sensitive adhesive (PSA) based on acrylates and the influence of parameters such as internal emulsifiers on peel adhesion on steel and also the influence of N‐methylol acrylamide and plasticizers on peel adhesion on glass, poly(vinyl chloride), and polypropylene during aging time. Removable and repositionable pressure‐sensitive adhesives based on acrylic polymers are used for the production of removable memo notes, paper and foil labels, double‐sided tapes, carrier‐free tapes to protective films, and manufacturing aids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 886–892, 2005  相似文献   

17.
Viscosity, loop tack, and peel strength of epoxidized natural rubber (ENR 25 grade)‐based pressure‐sensitive adhesive was studied in the presence of zinc oxide. The zinc oxide concentration was varied from 10–50 parts per hundred parts of rubber (phr). Coumarone–indene resin with loading from 20 to 100 phr was chosen as the tackifier resin. Toluene was used as the solvent throughout the experiment. The adhesive was coated on the substrate using a SHEEN hand coater to give a coating thickness of 60 μm. Viscosity of the adhesive was determined by a HAAKE Rotary Viscometer whereas the loop tack and peel strength were measured by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity and loop tack of adhesive increases with increasing zinc oxide concentration. For the peel strength, it increases with zinc oxide concentration up to 30–40 phr and drops after the maximum value. This observation is associated with the effect of varying degree of wettability of the adhesive on the substrate. However, for a fixed zinc oxide concentration, loop tack and peel strength exhibit maximum value at 80 phr resin loading after which both properties decrease with further addition of resin, an observation which is attributed to phase inversion. From this study, the optimum adhesion property is achieved by using 40 phr zinc oxide and 80 phr coumarone–indene resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The viscosity, loop tack, and shear strength of silica‐filled epoxidized natural rubber (ENR 25 and ENR 50 grade) adhesive were investigated using coumarone‐indene as the tackifying resin. Silica loading was varied from 10–50 parts per hundred parts of rubber (phr), whereas the coumarone‐indene concentration was fixed at 40 phr. Toluene was used as the solvent throughout the study. Polyethylene terephthalate substrate was coated at various adhesive coating thicknesses, i.e., 30, 60, 90, and 120 μm using a SHEEN Hand Coater. Viscosity of the adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and shear strength were measured by a Llyod Adhesion Tester operating at 30 cm/min. Result shows that viscosity of the adhesive increases gradually with increase of silica loading due to the concentration effect of the filler. Both loop tack and shear strength show maximum value at 40 phr silica for ENR 25. However, the respective values for ENR 50 are 20 and 40 phr of filler. This observation is attributed to the maximum wettability and compatibility of adhesive on the substrate at the respective silica loadings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
A series of polymeric emulsifiers was polymerized with 2‐ethylhexyl acrylate, butyl acrylate, and acrylic acid. The polymeric emulsifiers were used to make emulsion copolymers of 2‐ethylhexyl acrylate, butyl acrylate, and acrylic acid. The average particle size of the synthesized emulsions was around 145 nm and the size distribution was very narrow. Also, the emulsions showed good freeze–thaw stability and adhesion properties. The peel strength and holding power of the emulsions were investigated by changing the composition and molecular weight of the polymeric emulsifier. The results show that the peel strength exhibits a maximum at particular molecular weight and acrylic acid content of the polymeric emulsifier, while the holding power increases with molecular weight. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1456–1460, 2004  相似文献   

20.
In an attempt to control the adhesive properties of acrylic copolymer‐based pressure‐sensitive adhesives, a series of multifunctional acrylate monomers were added and UV cured. The adhesive compound with a difunctional monomer had increased peel strength after UV curing. On the other hand, the compound with a tri‐ or more functional (polyfunctional) monomer had markedly decreased strength after UV curing. Those adhesives containing any polyfunctional monomer also showed much higher storage modulus than an adhesive containing a difunctional monomer. The greater volume contraction of UV‐cured polyfunctional monomer suggested microvoids at the interface between the adhesive layer and the adherent, resulting in poor strength. Estimated values of the peel strength of UV‐cured adhesives according to the theoretical equations proved that the strength is approximately inversely proportional to the elastic moduli. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2889–2895, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号