首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The use of Green's functions has been considered a powerful technique in the solution of fracture mechanics problems by the boundary element method (BEM). Closed‐form expressions for Green's function components, however, have only been available for few simple 2‐D crack geometry applications and require complex variable theory. The present authors have recently introduced an alternative numerical procedure to compute the Green's function components that produced BEM results for 2‐D general geometry multiple crack problems, including static and dynamic applications. This technique is not restricted to 2‐D problems and the computational aspects of the 3‐D implementation of the numerical Green's function approach are now discussed, including examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A three-dimensional (3D) boundary element method (BEM) is developed for the analysis of composite laminates with holes. Instead of using Kelvin-type Green's functions of anisotropic infinite space, 3D layered Green's functions with the materials of each layer being generally anisotropic, derived recently in the Fourier transform domain, are implemented into a 3D BEM formulation. A novel numerical algorithm is designed to calculate layered Green's functions efficiently. It should be noted that since layered Green's functions satisfy exactly the continuity conditions along the interfaces and top and bottom free surfaces a priori, the model becomes truly 2D and discretization is only needed along the hole surface and prescribed traction and/or displacement boundaries. To test the validity and accuracy of the proposed method, the present layered BEM formulation is applied to the problem of an infinite anisotropic plate with a circular hole where the analytical solution is available. It is found that even with a very coarse mesh, the present BEM can predict the hoop stress very accurately along the hole surface. The BEM formulation is then applied to analyze two composite laminates (90/0)s and (−45/45)s, under a remote in-plane strain, that have been studied previously with different approaches. For the (90/0)s case, the hoop stresses along the hole surface predicted by the present layered BEM formulation are in very close agreement with the previous results. For the (−45/45)s case, however, it is found that a nearly converged solution (less than 5% convergence by doubling the mesh) by the present method is at significant variance with the previous ones that are lack-of-convergence checks. It can be expected that for designing the bolted joints of composites with many layers, a computational tool developed based on the present techniques would be robust and offer a much better solution with regard to accuracy, versatility and design cycle time.  相似文献   

3.
The boundary integral representation of second‐order derivatives of the primary function involves second‐order (hypersingular) and third‐order (supersingular) derivatives of the Green's function. By defining these highly singular integrals as a difference of boundary limits, interior minus exterior, the limiting values are shown to exist. With a Galerkin formulation, coincident and edge‐adjacent supersingular integrals are separately divergent, but the sum is finite, while the individual hypersingular integrals are finite. Moreover, the cancellation of the supersingular divergent terms only requires a continuous interpolation of the surface potential, and there is no continuity requirement on the surface flux. The algorithm is efficient, the non‐singular integrals vanish and the singular integrals are computed entirely analytically, and accurate values are obtained for smooth surfaces. However, it is shown that a (continuous) linear interpolation is not appropriate for evaluation at boundary corners. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

4.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An alternative scheme to compute the Green's function and its derivatives for three dimensional generally anisotropic elastic solids is presented in this paper. These items are essential in the formulation of the boundary element method (BEM); their evaluation has remained a subject of interest because of the mathematical complexity. The Green's function considered here is the one introduced by Ting and Lee [Q. J. Mech. Appl. Math. 1997; 50: 407–26] which is of real-variable, explicit form expressed in terms of Stroh's eigenvalues. It has received attention in BEM only quite recently. By taking advantage of the periodic nature of the spherical angles when it is expressed in the spherical coordinate system, it is proposed that this Green's function be represented by a double Fourier series. The Fourier coefficients are determined numerically only once for a given anisotropic material; this is independent of the number of field points in the BEM analysis. Derivatives of the Green's function can be performed by direct spatial differentiation of the Fourier series. The resulting formulations are more concise and simpler than those derived analytically in closed form in previous studies. Numerical examples are presented to demonstrate the veracity and superior efficiency of the scheme, particularly when the number of field points is very large, as is typically the case when analyzing practical three dimensional engineering problems.  相似文献   

6.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

7.
The problem of interactions between an inclusion and multiple cracks in a thermopiezoelectric solid is considered by boundary element method (BEM) in this paper. First of all, a BEM for the crack–inclusion problem is developed by way of potential variational principle, the concept of dislocation, and Green's function. In the BE model, the continuity condition of the interface between inclusion and matrix is satisfied, a priori, by the Green's function, and not involved in the boundary element equations. This is then followed by expressing the stress and electric displacement (SED) and elastic displacements and electric potential (EDEP) in terms of polynomials of complex variables ξt and ξk in the transformed ξ‐plane in order to simulate SED intensity factors by the BEM. The least‐squares method incorporating the BE formulation can, then, be used to calculate SED intensity factors directly. Numerical results for a piezoelectric plate with one inclusion and a crack are presented to illustrate the application of the proposed formulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
The Green's functions for a triclinic half‐space for embedded harmonic line load are considered. Corresponding displacement and stress fields are expressed in terms of double Fourier integrals. The first integral was evaluated using contour integration while the second one was computed through the Gauss–Legendre quadrature. The resulting Green's functions algorithm avoids repeated calculations of the same quantities and utilizes the vector computational features within MATLAB environment. Extensive testing of the results has been performed for both displacement and stress fields. The tests demonstrate the accuracy of the proposed procedure for evaluating the Green's functions without any restrictions upon material properties, frequency, and location of the source and observation points. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The boundary integral equation for the axisymmetric Laplace equation is solved by employing modified Galerkin weight functions. The alternative weights smooth out the singularity of the Green's function at the symmetry axis, and restore symmetry to the formulation. As a consequence, special treatment of the axis equations is avoided, and a symmetric‐Galerkin formulation would be possible. For the singular integration, the integrals containing a logarithmic singularity are converted to a non‐singular form and evaluated partially analytically and partially numerically. The modified weight functions, together with a boundary limit definition, also result in a simple algorithm for the post‐processing of the surface gradient. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, numerical frequency domain formulations are developed to simulate the 2D acoustic wave propagation in the vicinity of an underwater configuration which combines two sub-regions: the first one consists of a wedge with rigid seabed and free surface, and the second one is assumed to have a rigid flat bottom and a free flat surface.The problem is solved using two different numerical methods: the Boundary Element Method (BEM) and the Method of Fundamental Solutions (MFS). Two models are developed by using a sub-region technique, where only the vertical interface between sub-regions of different geometries has to be discretized. These formulations incorporate Green's functions that take into account the presence of flat rigid and free surfaces and of a wedge. Green's functions are defined using two approaches: the image source method is used to model the rigid flat bottom and free flat interface, whereas the response provided by the wedge sub-region is based on a normal mode solution. Additionally, a MFS and a BEM model are also implemented which require the discretization of the sloping rigid seabed of the wedge, therefore making use of Green's functions for a rigid flat bottom and a free surface (using the image source method).A detailed discussion on the performance of these formulations is performed, with the aim of finding an efficient formulation to solve the problem. It is found that the model based on the MFS and on the sub-region technique has a significantly lower computational cost and is stable, therefore being the most suitable for the analysis of acoustic wave propagation in the studied configurations.  相似文献   

12.
The displacement and stress Green's functions for a 3D triclinic half‐space with embedded harmonic point load is considered. The resulting displacement and stress fields are expressed in terms of triple Fourier integrals. The first integral was evaluated using contour integration and the 3D Green's functions were obtained as a superposition of 2D results over the azimuthal angle. The resulting algorithm developed for evaluation of the Green's functions avoids repeated calculations of the same quantities and it utilizes the vectorized manipulation within MATLAB environment. The algorithm places no restriction on material properties, frequency and location of source and observation points. Extensive testing of the numerical results was performed for both displacement and stress. The tests confirm the accuracy of the numerical results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A new mathematical model for accurately computing currents flowing along the high‐voltage ac substation's grounding system and nearby floating metallic conductors buried in the multilayer earth model has been developed in this paper, which is a hybrid of the Galerkin‐type boundary element method (BEM) and the conventional nodal analysis method. Only the propagation effect of electromagnetic waves within the substation's limited area has been neglected in this model. The quasi‐static complex image method and the closed form of Green's function are introduced into this model to accelerate the mutual impedance and induction coefficients calculation. The model is then implemented in a computer program, which can be used to calculate current distribution of any configuration of the grounding system, with or without floating metallic conductors'. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This work contains an analytical study of the asymptotic near‐crack contour behaviour of stresses obtained from the self‐regular traction‐boundary integral equation (BIE), both in two and in three dimensions, and for various crack displacement modes. The flat crack case is chosen for detailed analysis of the singular stress for points approaching the crack contour. By imposing a condition of bounded stresses on the crack surface, the work shows that the boundary stresses on the crack are in fact zero for an unloaded crack, and the interior stresses reproduce the known inverse square root behaviour when the distance from the interior point to the crack contour approaches zero. The correct order of the stress singularity is obtained after the integrals for the self‐regular traction‐BIE formulation are evaluated analytically for the assumed displacement discontinuity model. Based on the analytic results, a new near‐crack contour self‐regular traction‐BIE is proposed for collocation points near the crack contour. In this new formulation, the asymptotic log‐singular stresses are identified and extracted from the BIE. Log‐singular stress terms are revealed for the free integrals written as contour integrals and for the self‐regularized integral with the integration region divided into sub‐regions. These terms are shown to cancel each other exactly when combined and can therefore be eliminated from the final BIE formulation. This work separates mathematical and physical singularities in a unique manner. Mathematical singularities are identified, and the singular information is all contained in the region near the crack contour. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Three formulations of the boundary element method (BEM) and one of the Galerkin finite element method (FEM) are compared according to accuracy and efficiency for the spatial discretization of two-dimensional, moving-boundary problems based on Laplace's equation. The same Euler-predictor, trapezoid-corrector scheme for time integration is used for all four methods. The model problems are on either a bounded or a semi-infinite strip and are formulated so that closed-form solutions are known. Infinite elements are used with both the BEM and FEM techniques for the unbounded domain. For problems with the bounded region, the BEM using the free-space Green's function and piecewise quadratic interpolating functions (QBEM) is more accurate and efficient than the BEM with linear interpolation. However, the FEM with biquadratic basis functions is more efficient for a given accuracy requirement than the QBEM, except when very high accuracy is demanded. For the unbounded domain, the preferred method is the BEM based on a Green's function that satisfies the lateral symmetry conditions and which leads to discretization of the potential only along the moving surface. This last formulation is the only one that reliably satisfies the far-field boundary condition.  相似文献   

16.
Three different boundary element methods (BEM) for transient dynamic crack analysis in two-dimensional (2-D), homogeneous, anisotropic and linear elastic solids are presented. Hypersingular traction boundary integral equations (BIEs) in frequency- domain, Laplace-domain and time-domain with the corresponding elastodynamic fundamental solutions are applied for this purpose. In the frequency-domain and the Laplace-domain BEM, numerical solutions are first obtained in the transformed domain for discrete frequency or Laplace-transform parameters. Time-dependent results are subsequently obtained by means of the inverse Fourier-transform and the inverse Laplace-transform algorithm of Stehfest. In the time-domain BEM, the quadrature formula of Lubich is adopted to approximate the arising convolution integrals in the time-domain BIEs. Hypersingular integrals involved in the traction BIEs are computed through a regularization process that converts the hypersingular integrals to regular integrals, which can be computed numerically, and singular integrals which can be integrated analytically. Numerical results for the dynamic stress intensity factors are presented and discussed for a finite crack in an infinite domain subjected to an impact crack-face loading.  相似文献   

17.
This paper presents the non‐singular forms, in a global sense, of two‐dimensional Green's boundary formula and its normal derivative. The main advantage of the modified formulations is that they are amenable to solution by directly applying standard quadrature formulas over the entire integration domain; that is, the proposed element‐free method requires only nodal data. The approach includes expressing the unknown function as a truncated Fourier–Legendre series, together with transforming the integration interval [a, b] to [‐1,1] ; the series coefficients are thus to be determined. The hypersingular integral, interpreted in the Hadamard finite‐part sense, and some weakly singular integrals can be evaluated analytically; the remaining integrals are regular with the limiting values of the integrands defined explicitly when a source point coincides with a field point. The effectiveness of the modified formulations is examined by an elliptic cylinder subject to prescribed boundary conditions. The regularization is further applied to acoustic scattering problems. The well‐known Burton–Miller method, using a linear combination of the surface Helmholtz integral equation and its normal derivative, is adopted to overcome the non‐uniqueness problem. A general non‐singular form of the composite equation is derived. Comparisons with analytical solutions for acoustically soft and hard circular cylinders are made. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A semi‐analytical integration scheme is described in this paper which is designed to reduce the errors incurred when integrals with singular integrands are evaluated numerically. This new scheme can be applied to linear triangular elements for use in steady‐state elastodynamic BEM problems and is particularly useful for predicting displacement to high accuracy, close to surfaces for a spectrum of frequencies. The scheme involves the application of Taylor expansions to formulate the integrals into two parts. One part is regular and is evaluated numerically and the other part is singular but sufficiently simple to enable its transforma tion into a line integral. The line integral is solved numerically using Gauss–Legendre quadrature. This approach caters for all the integral types that appear in steady‐state elastodynamic boundary elements but, in particular, no special treatment is required for the evaluation of the Cauchy principal value singular integrals. Numerical tests are performed on a simple test‐problem for which a known analytical solution exists. The results obtained using the semi‐analytical approach are shown to be considerably more accurate than those obtained using standard quadrature methods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
For non‐homogeneous or non‐linear problems, a major difficulty in applying the boundary element method (BEM) is the treatment of the volume integrals that arise. An accurate scheme that requires no volume discretization is highly desirable. In this paper, we describe an efficient approach, based on the precorrected‐FFT technique, for the evaluation of volume integrals resulting from non‐homogeneous linear problems. In this approach, the 3‐D uniform grid constructed initially to accelerate surface integration is used as the baseline mesh for the evaluation of volume integrals. As such, no volume discretization of the interior problem domain is necessary. Moreover, with the uniform 3‐D grid, the matrix sparsification techniques (such as the precorrected‐FFT technique used in this work) can be extended to accelerate volume integration in addition to surface integration, thus greatly reducing the computational time. The accuracy and efficiency of our approach are demonstrated through several examples. A 3‐D accelerated BEM solver for Poisson equations has been developed and has been applied to a 3‐D multiply‐connected problem with complex geometries. Good agreement between simulation results and analytical solutions has been obtained. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The boundary traction integral representation is obtained in elasticity when the classical displacement representation is differentiated and combined according to Hooke's law. The use of both traction and displacement integral representations leads to a mixed (or dual) formulation of the BEM where the discretization effort for crack problems is much smaller than in the classical formulation. A boundary element analysis of three‐dimensional fracture mechanics problems of transversely isotropic solids based on the mixed formulation is presented in this paper. The hypersingular and strongly singular kernels appearing in the formulation are regularized by using two terms of the displacement series expansion and one term of the traction expansion, at the collocation point. All the remaining integrals are analytically evaluated or transformed by means of Stokes' theorem into regular or weakly singular integrals, which are numerically computed. The method is general and can be used for elements of any shape including quarter‐point crack front elements. No change of co‐ordinates is required for the integration. The formulation as presented in this paper is something as clear, general and easy to handle as the classical BE formulation. It is used in combination with three‐dimensional quadratic and quarter‐point elements to obtain accurate results for several different crack problems. Cracks in boundless and finite transversely isotropic domains are studied. The meshes are simple and include only discretization of the crack and the external boundary. The obtained results are in good agreement with those existing in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号