首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the numerical solution of the Laplace and biharmonic equations subjected to noisy boundary data. Since both equations are linear, they are numerically discretized using the Boundary Element Method (BEM), which does not use any solution domain discretization, to reduce the problem to solving a system of linear algebraic equations for the unspecified boundary values. It is shown that when noisy, lower-order derivatives are prescribed on the boundary, then a direct approach, e.g. Gaussian elimination, for solving the resulting discretized system of linear equations produces an unstable, i.e. unbounded and highly oscillatory, numerical solution for the unspecified higher-order boundary derivatives data. In order to overcome this difficulty, and produce a stable solution of the resulting system of linear equations, the singular value decomposition approach (SVD), truncated at an optimal level given by the L-curve method, is employed. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
An improved boundary element formulation (BEM) for two-dimensional non-homogeneous biharmonic analysis of rectilinear plates is presented. A boundary element formulation is developed from a coupled set of Poisson-type boundary integral equations derived from the governing non-homogeneous biharmonic equation. Emphasis is given to the development of exact expressions for the piecewise rectilinear boundary integration of the fundamental solution and its derivatives over several types of isoparametric elements. Incorporation of the explicit form of the integrations into the boundary element formulation improves the computational accuracy of the solution by substantially eliminating the error introduced by numerical quadrature, particularly those errors encountered near singularities. In addition, the single iterative nature of the exact calculations reduces the time necessary to compile the boundary system matrices and also provides a more rapid evaluation of internal point values than do formulations using regular numerical quadrature techniques. The evaluation of the domain integrations associated with biharmonic forms of the non-homogeneous terms of the governing equation are transformed to an equivalent set of boundary integrals. Transformations of this type are introduced to avoid the difficulties of domain integration. The resulting set of boundary integrals describing the domain contribution is generally evaluated numerically; however, some exact expressions for several commonly encountered non-homogeneous terms are used. Several numerical solutions of the deflection of rectilinear plates using the boundary element method (BEM) are presented and compared to existing numerical or exact solutions.  相似文献   

3.
The BEM is developed for the analysis of plates with variable thickness resting on a nonlinear biparametric elastic foundation. The presented solution is achieved using the Analog Equation Method (AEM). According to the AEM the fourth-order partial differential equation with variable coefficients describing the response of the plate is converted to an equivalent linear problem for a plate with constant stiffness not resting on foundation and subjected only to an `appropriate' fictitious load under the same boundary conditions. The fictitious load is established using a technique based on the BEM and the solution of the actual problem is obtained from the known integral representation of the solution of the substitute problem, which is derived using the static fundamental solution of the biharmonic equation. The method is boundary-only in the sense that the discretization and the integration are performed only on the boundary. To illustrate the method and its efficiency, plates of various shapes are analyzed with linear and quadratic plate thickness variation laws resting on a nonlinear biparametric elastic foundation.  相似文献   

4.
In this paper, a nonlinear inverse boundary value problem associated to the biharmonic equation is investigated. This problem consists of determining an unknown boundary portion of a solution domain by using additional data on the remaining known part of the boundary. The method of fundamental solutions (MFS), in combination with the Tikhonov zeroth order regularization technique, are employed. It is shown that the MFS regularization numerical technique produces a stable and accurate numerical solution for an optimal choice of the regularization parameter. A. Zeb on study leave visiting the University of Leeds.  相似文献   

5.
A boundary element method (BEM)-based variational method is presented for the solution of elliptic PDEs describing the mechanical response of general inhomogeneous anisotropic bodies of arbitrary geometry. The equations, which in general have variable coefficients, may be linear or nonlinear. Using the concept of the analog equation of Katsikadelis the original equation is converted into a linear membrane (Poisson) or a linear plate (biharmonic) equation, depending on the order of the PDE under a fictitious load, which is approximated with radial basis function series of multiquadric (MQ) type. The integral representation of the solution of the substitute equation yields shape functions, which are global and satisfy both essential and natural boundary conditions, hence the name generalized Ritz method. The minimization of the functional that produces the PDE as the associated Euler–Lagrange equation yields not only the Ritz coefficients but also permits the evaluation of optimal values for the shape parameters of the MQs as well as optimal position of their centers, minimizing thus the error. If a functional does not exists or cannot be constructed as it is the usual case of nonlinear PDEs, the Galerkin principle can be applied. Since the arising domain integrals are converted into boundary line integrals, the method is boundary-only and, therefore, it maintains all the advantages of the pure BEM. Example problems are studied, which illustrate the method and demonstrate its efficiency and great accuracy.  相似文献   

6.
A weakly singular stress‐BEM is presented in which the linear state regularizing field is extended over the entire surface. The algorithm employs standard conforming C0 elements with Lagrangian interpolations and exclusively uses Gaussian integration without any transformation of the integrands other than the usual mapping into the intrinsic space. The linear state stress‐BIE on which the algorithm is based has no free term so that the BEM treatment of external corners requires no special consideration other than to admit traction discontinuities. The self‐regularizing nature of the Somigliana stress identity is demonstrated to produce a very simple and effective method for computing stresses which gives excellent numerical results for all points in the body including boundary points and interior points which may be arbitrarily close to a boundary. A key observation is the relation between BIE density functions and successful interpolation orders. Numerical results for two dimensions show that the use of quartic interpolations is required for algorithms employing regularization over an entire surface to show comparable accuracy to algorithms using local regularization and quadratic interpolations. Additionally, the numerical results show that there is no general correlation between discontinuities in elemental displacement gradients and solution accuracy either in terms of unknown boundary data or interior solutions near element junctions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Development of techniques to provide rapid and accurate evaluation of the integrations required in boundary element method (BEM) formulations are receiving more attention in the literature. In this work, a series of direct expressions for surface integrals, required for a boundary element solution of the non-homogeneous biharmonic over a general two-dimensional curvilinear surface, are presented. The concept of an isoparametric representation, usually applied to the variation of the field variables and the geometry, is extended to the parametric mapping of the curvilinear geometry. The result renders the typically complicated Jacobian function into a series of polynomial expressions based on the shape function set and several discrete Jacobian values. An application of the isoparametric approximation of the Jacobian for a quadratic element representation is developed. Implementation of this approximation significantly improves the accuracy of the boundary integral solution by eliminating error associated with numerical quadrature. Overall computational efficiency is improved by reducing the time necessary to calculate individual surface integrals and evaluate field variables at internal points. A numerical solution of the boundary integral equations of phenomena governed by the biharmonic equation is presented and compared with an exact analysis.  相似文献   

8.
A direct-type Boundary Element Method (BEM) for the analysis of simply supported and built-in plates is employed. The integral equations due to a combined biharmonic and harmonic governing equations are first established. The boundary integrals developed are then evaluated analytically. The domain integrals due to external body forces are also transformed over the boundary and subsequently evaluated analytically. Thus, it needs only the boundary to be discretized. Without loss of generality, the exact expression for the integrals would enhance the solution accuracy of the BEM. This is due to the fact that at locations where the fundamental solutions approach their singular points the value determined by numerical quadrature may be inconsistent and inaccurate. Also, another major advantage of the exact expressions for integrations is the insensitivity to the geometrical location of the source point on the boundary. The distribution of boundary quantities is approximated either over linear or quadratic boundary elements. General type of plate bending problems, with plates of different geometrical shapes supported simply or fixed can be handled. Loading may be applied point concentrated, uniformly distributed within the domain or over the boundary. Also, hydrostatic pressure can be applied. The results obtained by BEM in comparison with those obtained by analytical or other approximate solutions are found to be very accurate and the solution method is efficient.  相似文献   

9.
In the Boundary Element Method (BEM) based on the direct formulation, body-force effects manifest themselves as an additional volume integral term in the Boundary Integral Equation (BIE). The numerical solution of the integral equation with this term destroys the notion of the BEM as atruly boundary solution method. This paper discusses the treatment of this volume integral for two-dimensional anisotropic elasticity with body-forces present. The analytical basis for transforming this integral exactly into boundary ones is presented for geometrically convex regions. This restores the application of the BEM to such problems as a truly boundary solution technique. Numerical examples are presented to demonstrate the veracity of the transformation and implementation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
We study the identification of an unknown portion of the boundary of a two-dimensional domain occupied by a material satisfying Helmholtz-type equations from additional Cauchy data on the remaining known portion of the boundary. This inverse geometric problem is approached using the boundary element method (BEM) in conjunction with the Tikhonov first-order regularization procedure, whilst the choice of the regularization parameter is based on the L-curve criterion. The numerical results obtained show that the proposed method produces a convergent and stable solution  相似文献   

11.
The Boundary Contour Method (BCM) is a recent variant of the Boundary Element Method (BEM) resting on the use of boundary approximations which a-priori satisfy the field equations. For two-dimensional problems, the evaluation of all the line-integrals involved in the collocation BCM reduces to function evaluations at the end-points of each element, thus completely avoiding numerical integrations. With reference to 2-D linear elasticity, this paper develops a variational version of BCM by transferring to the BCM context the ingredients which characterize the Galerkin-Symmetric BEM (GSBEM). The method proposed herein requires no numerical integrations: all the needed double line-integrals over boundary elements pairs can be evaluated by generating appropriate “potential functions” (in closed form) and computing their values at the element end-points. This holds for straight as well as curved elements; however the coefficient matrix of the equation system in the boundary unknowns turns out to be fully symmetric only when all the elements are straight. The numerical results obtained for some benchmark problems, for which analytical solutions are available, validate the proposed formulation and the corresponding solution procedure.  相似文献   

12.
In this paper, we propose an alternating iterative algorithm to solve a singular Cauchy problem for the anisotropic heat conduction equation. The numerical algorithm is based on the boundary element method (BEM), modified to take into account the form of the singularity, without substantially increasing the amount of computation involved. Two test examples, the first with a singularity caused by an abrupt change in the boundary conditions and the second with a singularity caused by a sharp re-entrant corner, are investigated. The numerical results obtained confirm that provided an appropriate stopping regularization criterion is imposed, the iterative BEM is efficient in dealing with the difficulties arising from both the instabilities produced by the boundary condition formulation and the slow rate of convergence of standard numerical methods around the singular point.  相似文献   

13.
In this paper a solution to the problem of elastic space (initially non‐flat) membranes is presented. A new formulation of the governing differential equations is presented in terms of the displacements in the Cartesian co‐ordinates. The reference surface of the membrane is the minimal surface. The problem is solved by direct integration of the differential equations using the analogue equation method (AEM). According to this method the three coupled non‐linear partial differential equations with variable coefficients are replaced with three uncoupled equivalent linear flat membrane equations (Poisson's equations) subjected to unknown sources under the same boundary conditions. Subsequently, the unknown sources are established using a procedure based on the BEM. The displacements as well as the stress resultants are evaluated at any point of the membrane from their integral representations of the solution of the substitute problems, which are used as mathematical formulae. Several membranes are analysed which illustrate the method and demonstrate its efficiency and accuracy as compared with analytical and existing numerical methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally, a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems with good accuracy. Possible improvements in the efficiency of the method are discussed.  相似文献   

15.
A direct boundary element method (BEM) is developed for the determination of the time-dependent inelastic deflection of plates of arbitrary planform and under arbitrary boundary conditions to general lateral loading history. The governing differential equation is the nonhomogeneous biharmonic equation for the rate of small transverse deflection. The boundary integral formulation is derived by using a combination of the BEM and finite element methodology. The plate material is modelled as elastic-viscoplastic. Numerical examples for sample problems are presented to illustrate the method and to demonstrate its merits.  相似文献   

16.
The boundary knot method is an inherently meshless, integration‐free, boundary‐type, radial basis function collocation technique for the solution of partial differential equations. In this paper, the method is applied to the solution of some inverse problems for the Helmholtz equation, including the highly ill‐posed Cauchy problem. Since the resulting matrix equation is badly ill‐conditioned, a regularized solution is obtained by employing truncated singular value decomposition, while the regularization parameter for the regularization method is provided by the L‐curve method. Numerical results are presented for both smooth and piecewise smooth geometry. The stability of the method with respect to the noise in the data is investigated by using simulated noisy data. The results show that the method is highly accurate, computationally efficient and stable, and can be a competitive alternative to existing methods for the numerical solution of the problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Two numerical methods for the Cauchy problem of the biharmonic equation are proposed. The solution of the problem does not continuously depend on given Cauchy data since the problem is ill-posed. A small noise contained in the Cauchy data sensitively affects on the accuracy of the solution. Our problem is directly discretized by the method of fundamental solutions (MFS) to derive an ill-conditioned matrix equation. As another method, our problem is decomposed into two Cauchy problems of the Laplace and the Poisson equations, which are discretized by the MFS and the method of particular solutions (MPS), respectively. The Tikhonov regularization and the truncated singular value decomposition are applied to the matrix equation to stabilize a numerical solution of the problem for the given Cauchy data with high noises. The L-curve and the generalized cross-validation determine a suitable regularization parameter for obtaining an accurate solution. Based on numerical experiments, it is concluded that the numerical method proposed in this paper is effective for the problem that has an irregular domain and the Cauchy data with high noises. Furthermore, our latter method can successfully solve the problem whose solution has a singular point outside the computational domain.  相似文献   

18.
This work presents a two‐dimensional boundary element method (BEM) formulation for the analysis of scalar wave propagation problems. The formulation is based on the so‐called convolution quadrature method (CQM) by means of which the convolution integral, presented in time‐domain BEM formulations, is numerically substituted by a quadrature formula, whose weights are computed using the Laplace transform of the fundamental solution and a linear multistep method. This BEM formulation was initially developed for scalar wave propagation problems with null initial conditions. In order to overcome this limitation, this work presents a general procedure that enables one to take into account non‐homogeneous initial conditions, after replacing the initial conditions by equivalent pseudo‐forces. The numerical results included in this work show the accuracy of the proposed BEM formulation and its applicability to such kind of analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A new fundamental solutions method for the numerical solution of two-dimensional biharmonic problems is described. In this method, which is based on the Almansi representation of a biharmonic function in the plane, the approximate solution is expressed in terms of fundamental solutions of Laplace's equation, and is determined by a least squares fit of the boundary conditions. The results of numerical experiments which demonstrate the efficacy of the method are presented.  相似文献   

20.
An original approach to the numerical solution of displacement boundary integral equation (BIE) and traction hypersingular boundary integral equation (HBIE) by the boundary element method (BEM) for contact problems is given. The main point is to show, how the contact conditions are used to formulate the first-kind and the second-kind BIE systems in the case of frictionless two-body elastic contact. The solution of the first-kind BIE is performed by symmetric Galerkin BEM; the second-kind BIE is solved by an appropriate collocation BEM. The contact problem in itself is solved by the method of subsequent approximations of contact region. Both forms of BIE system are compared in several numerical examples. This comparison is made for different kinds of contact problem. The major emphasis is put on the evaluation of contact pressure. The obtained results are compared with referenced numerical and with the analytical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号