首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a coupled model based on finite element method (FEM), boundary element method (BEM) and scaled boundary FEM (SBFEM) (also referred to as the consistent infinitesimal finite element cell method) for dynamic response of 2D structures resting on layered soil media is presented. The SBFEM proposed by Wolf and Song (Finite‐element Modelling of Unbounded Media. Wiley: England, 1996) and BEM are used for modelling the dynamic response of the unbounded media (far‐field). The standard FEM is used for modelling the finite region (near‐field) and the structure. In SBFEM, which is a semi‐analytical technique, the radiation condition at infinity is satisfied exactly without requiring the fundamental solution. This method, also eliminates the need for the discretization of interfaces between different layers. In both SBFEM and BEM, the spatial dimension is decreased by one. The objective of the development of this coupled model is to combine advantages of above‐mentioned three numerical models to solve various soil–structure interaction (SSI) problems efficiently and effectively. These three methods are coupled (FE–BE–SBFEM) via substructuring method, and a computer programme is developed for the harmonic analyses of SSI systems. The coupled model is established in such a way that, depending upon the problem and far‐field properties, one can choose BEM and/or SBFEM in modelling related far‐field region(s). Thus, BEM and/or SBFEM can be used efficiently in modelling the far‐field. The proposed model is applied to investigate dynamic response of rigid and elastic structures resting on layered soil media. To assess the proposed SSI model, several problems existing in the literature are chosen and analysed. The results of the proposed model agree with the results presented in the literature for the chosen problems. The advantages of the model are demonstrated through these comparisons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A new method to track massless particles in a three‐dimensional flow field is presented. The method is based on an element‐by‐element approach coupled with a predictor–corrector shooting scheme and does not use any time step. By analogy with time‐dependent schemes, the number of shootings is related to an equivalent number of time steps. The method has been implemented in a finite element framework using unstructured tetrahedral finite element meshes. However, it is general enough so that it can be implemented in finite difference and finite volume frameworks as well. It has been tested on a variety of flow systems namely: the Poiseuille flow in an empty circular pipe, the rotating flow in a stirred tank, the shear flow in a square tank and the flow through a static mixer. Accuracy has been found to depend on the accuracy of the velocity computation, the number of points per element and the level of mesh refinement. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper the formulation of an electric–mechanical beam‐to‐beam contact element is presented. Beams with circular cross‐sections are assumed to get in contact in a point‐wise manner and with clean metallic surfaces. The voltage distribution is influenced by the contact mechanics, since the current flow is constricted to small contacting spots. Therefore, the solution is governed by the contacting areas and hence by the contact forces. As a consequence the problem is semi‐coupled with the mechanical field influencing the electric one. The electric–mechanical contact constraints are enforced with the penalty method within the finite element technique. The virtual work equations for the mechanical and electric fields are written and consistently linearized to achieve a good level of computational efficiency with the finite element method. The set of equations is solved with a monolithic approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
An Erratum has been published for this article in International Journal for Numerical Methods in Engineering 2005, 63(8): 1228. We present a new formulation and a numerical procedure for the quasi‐static analysis of three‐dimensional crack propagation in brittle and quasi‐brittle solids. The extended finite element method (XFEM) is combined with linear tetrahedral elements. A viscosity‐regularized continuum damage constitutive model is used and coupled with the XFEM formulation resulting in a regularized ‘crack‐band’ version of XFEM. The evolving discontinuity surface is discretized through a C0 surface formed by the union of the triangles and quadrilaterals that separate each cracked element in two. The element's properties allow a closed form integration and a particularly efficient implementation allowing large‐scale 3D problems to be studied. Several examples of crack propagation are shown, illustrating the good results that can be achieved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A previously developed hybrid finite element–scaled boundary finite element method (FEM–SBFEM) is extended to model multiple cohesive crack propagation in reinforced concrete. This hybrid method can efficiently extract accurate stress intensity factors from the semi-analytical solutions of SBFEM and is also flexible in remeshing multiple cracks. Crack propagation in the concrete bulk is modelled by automatically inserted cohesive interface elements with nonlinear softening laws. The concrete–reinforcement interaction is also modelled by cohesive interface elements. The bond shear stress–slip relation of CEB-FIP Model Code 90 and an empirical confining stress–crack opening relation are used to characterise slip and split failure at the concrete–reinforcement interface, respectively. Three RC beams were simulated. The numerical results agreed well with both experimental and numerical results available in the literature. Parametric studies demonstrated the importance of modelling both slip and split failure mechanisms at the concrete–reinforcement interface.  相似文献   

6.
A finite element analysis model for material and geometrical non-linearities due to large plastic deformations of ductile materials is presented using the continuum damage mechanics approach. To overcome limitations of the conventional plastic analysis, a fourth-order tensor damage, defined in Part I of this paper to represent the stiffness degradation in the finite strain regime, is incorporated. General forms of an updated Lagrangian (U.L.) finite element procedure are formulated to solve the governing equations of the coupled elastic–plastic-damage analysis, and a computer program is developed for two-dimensional plane stress/strain problems. A numerical algorithm to treat the anisotropic damage is proposed in addition to the non-linear incremental solution algorithm of the U.L. formulation. Selected examples, compared with published results, show the validity of the presented finite element approach. Finally, the necking phenomenon of a plate with a hole is studied to explore plastic damage in large strain deformations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A two-step method, coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM), is developed in this paper for modelling cohesive crack growth in quasi-brittle normal-sized structures such as concrete beams. In the first step, the crack trajectory is fully automatically predicted by a recently-developed simple remeshing procedure using the SBFEM based on the linear elastic fracture mechanics theory. In the second step, interfacial finite elements with tension-softening constitutive laws are inserted into the crack path to model gradual energy dissipation in the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the proposed method. The numerical results demonstrate that this two-step SBFEM-FEM coupled method can predict both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for crack growth problems with strong snap-back phenomenon. The effects of the tensile strength, the mode-I and mode-II fracture energies on the predicted load-displacement relations are also discussed.  相似文献   

9.
10.
This paper presents a unified technique for solving the plate bending problems by extending the scaled boundary finite element method. The formulation is based on the three‐dimensional governing equation without enforcing the kinematics of plate theory. Only the in‐plane dimensions are discretised into finite elements. Any two‐dimensional displacement‐based elements can be employed. The solution along the thickness is expressed analytically by using a matrix function. The proposed technique is consistent with the three‐dimensional theory and applicable to both thick and thin plates without exhibiting the numerical locking phenomenon. Moreover, the use of higher order spectral elements allows the proposed technique to better represent curved boundaries and to achieve high accuracy and fast convergence. Numerical examples of various plate structures with different thickness‐to‐length ratios demonstrate the applicability and accuracy of the proposed technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for fully-automatic modelling of cohesive crack growth in quasi-brittle materials. The simple linear elastic fracture mechanics (LEFM)-based remeshing procedure developed previously is augmented by inserting nonlinear interface finite elements automatically. The constitutive law of these elements is modelled by the cohesive/fictitious crack model to simulate the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. The crack is assumed to grow when the mode-I stress intensity factor KI vanishes in the direction determined by LEFM criteria. Other salient algorithms associated with the SBFEM, such as mapping state variables after remeshing and calculating KI using a “shadow subdomain”, are also described. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the new method. The results show that this SBFEM-FEM coupled method is capable of fully-automatically predicting both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for problems with strong snap-back. Parametric studies were carried out on the crack incremental length, the concrete tensile strength, and the mode-I and mode-II fracture energies. It is found that the KI ? 0 criterion is objective with respect to the crack incremental length.  相似文献   

12.
This paper presents a new approach for obtaining the distribution of temperature in the dies during thermo-mechanical numerical analysis of metal forming problems. The proposed approach is based on a solution resulting from the combination of the finite element method with the boundary element method. The finite element method is used to perform the numerical modelling of the thermo-mechanical deformation of the workpiece, taking into account the geometrical and material non-linearities as well as the influence of the temperature distribution on the mechanical behaviour of the material. The boundary element method is applied for computing the distribution of temperatures in the dies. The combination of the two numerical methods is made using the finite element solution of the heat flow exchanged across the die–workpiece interface to define the boundary conditions to be applied on the thermal analysis of the dies. A numerical example of compression under plane-strain conditions is included to show the applicability of the proposed approach. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
The scaled boundary finite element method is a novel semi‐analytical technique, whose versatility, accuracy and efficiency are not only equal to, but potentially better than the finite element method and the boundary element method for certain problems. This paper investigates the possibility of using higher‐order polynomial functions for the shape functions. Two techniques for generating the higher‐order shape functions are investigated. In the first, the spectral element approach is used with Lagrange interpolation functions. In the second, hierarchical polynomial shape functions are employed to add new degrees of freedom into the domain without changing the existing ones, as in the p‐version of the finite element method. To check the accuracy of the proposed procedures, a plane strain problem for which an exact solution is available is employed. A more complex example involving three scaled boundary subdomains is also addressed. The rates of convergence of these examples under p‐refinement are compared with the corresponding rates of convergence achieved when uniform h‐refinement is used, allowing direct comparison of the computational cost of the two approaches. The results show that it is advantageous to use higher‐order elements, and that higher rates of convergence can be obtained using p‐refinement instead of h‐refinement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, an enhanced cell‐based smoothed finite element method (FEM) is presented for the Reissner–Mindlin plate bending analysis. The smoothed curvature computed by a boundary integral along the boundaries of smoothing cells in original smoothed FEM is reformulated, and the relationship between the original approach and the present method in curvature smoothing is established. To improve the accuracy of shear strain in a distorted mesh, we span the shear strain space over the adjacent element. This is performed by employing an edge‐based smoothing technique through a simple area‐weighted smoothing procedure on MITC4 assumed shear strain field. A three‐field variational principle is utilized to develop the mixed formulation. The resultant element formulation is further reduced to a displacement‐based formulation via an assumed strain method defined by the edge‐smoothing technique. As the result, a new formulation consisting of smoothed curvature and smoothed shear strain interpolated by the standard transverse displacement/rotation fields and smoothing operators can be shown to improve the solution accuracy in cell‐based smoothed FEM for Reissner–Mindlin plate bending analysis. Several numerical examples are presented to demonstrate the accuracy of the proposed formulation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A high‐order time‐domain approach for wave propagation in bounded and unbounded domains is proposed. It is based on the scaled boundary FEM, which excels in modelling unbounded domains and singularities. The dynamic stiffness matrices of bounded and unbounded domains are expressed as continued‐fraction expansions, which leads to accurate results with only about three terms per wavelength. An improved continued‐fraction approach for bounded domains is proposed, which yields numerically more robust time‐domain formulations. The coefficient matrices of the corresponding continued‐fraction expansion are determined recursively. The resulting solution is suitable for systems with many DOFs as it converges over the whole frequency range, even for high orders of expansion. A scheme for coupling the proposed improved high‐order time‐domain formulation for bounded domains with a high‐order transmitting boundary suggested previously is also proposed. In the time‐domain, the coupled model corresponds to equations of motion with symmetric, banded and frequency‐independent coefficient matrices, which can be solved efficiently using standard time‐integration schemes. Numerical examples for modal and time‐domain analysis are presented to demonstrate the increased robustness, efficiency and accuracy of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Multi‐material Eulerian and arbitrary Lagrangian–Eulerian methods were originally developed for solving hypervelocity impact problems, but they are attractive for solving a broad range of problems having large deformations, the evolution of new free surfaces, and chemical reactions. The contact, separation, and slip between two surfaces have traditionally been addressed by the mixture theory, however the accuracy of this approach is severely limited. To improve the accuracy, an extended finite element formulation is developed and example calculations are presented. As a side benefit, the mixture theory is eliminated from the multi‐material formulation, eliminating the issues associated with the equilibration time between adjacent materials. By design, the new formulation is relatively simple to implement in existing multi‐material codes, parallelizes without difficulty, and has a low memory burden. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Digital imaging technologies such as X‐ray scans and ultrasound provide a convenient and non‐invasive way to capture high‐resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We introduce a new numerical method to model the fluid–structure interaction between a microcapsule and an external flow. An explicit finite element method is used to model the large deformation of the capsule wall, which is treated as a bidimensional hyperelastic membrane. It is coupled with a boundary integral method to solve for the internal and external Stokes flows. Our results are compared with previous studies in two classical test cases: a capsule in a simple shear flow and in a planar hyperbolic flow. The method is found to be numerically stable, even when the membrane undergoes in‐plane compression, which had been shown to be a destabilizing factor for other methods. The results are in very good agreement with the literature. When the viscous forces are increased with respect to the membrane elastic forces, three regimes are found for both flow cases. Our method allows a precise characterization of the critical parameters governing the transitions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this work we propose a method which combines the element‐free Galerkin (EFG) with an extended partition of unity finite element method (PUFEM), that is able to enforce, in some limiting sense, the essential boundary conditions as done in the finite element method (FEM). The proposed extended PUFEM is based on the moving least square approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear and higher order base functions. With the objective of avoiding the presence of singular points, the extended PUFEM considers an extension of the support of the classical PUFE weight function. Since the extended PUFEM is closely related to the EFG method there is no need for special approximation functions with complex implementation procedures, and no use of the penalty and/or multiplier method is required in order to approximately impose the essential boundary condition. Thus, a relatively simple procedure is needed to combine both methods. In order to attest the performance of the method we consider the solution of an analytical elastic problem and also some coupled elastoplastic‐damage problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号