首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient dual boundary element technique for the analysis of a two-dimensional finite body with multiple cracks is established. In addition to the displacement integral equation derived for the outer boundary, since the relative displacement of the crack surfaces is adopted in the formulation, only the traction integral equation is established on one of the crack surfaces. For each crack, a virtual boundary is devised and connected to one of the crack surfaces to construct a closed integral path. The rigid body translation for the domain enclosed by the closed integral path is then employed for evaluating the hypersingular integral. To solve the dual displacement/traction integral equations simultaneously, the constant and quadratic isoparametric elements are taken to discretize the closed integral paths/crack surfaces and the outer boundary, respectively. The present method has distinct computational advantages in solving a fracture problem which has arbitrary numbers, distributions, orientations and shapes of cracks by a few boundary elements. Several examples are analysed and the computed results are in excellent agreement with other analytical or numerical solutions.  相似文献   

3.
Abstract

The fatigue behavior of a crack in a missile structure is studied using the dual boundary integral equations developed by Hong and Chen (1988). This method, which incorporates two independent boundary integral equations, uses the displacement equation to model one of the crack boundaries and the traction equation to the other. A single domain approach can be performed efficiently. The stress intensity factors are calculated and the paths of crack growth are predicted. In order to evaluate the results of dual BEM, four examples with FEM results are provided. Two practical examples, cracks in a V‐band and a solid propellant motor are studied and are compared with experimental data. Good agreement is found.  相似文献   

4.
In this paper, the dynamic interaction between an inclusion and a nearby moving crack embedded in an elastic medium is studied by the boundary element method (BEM). To deal with this problem, the multi-region technique and two kinds of time-domain boundary integral equations (BIEs) are introduced. The system is divided into two parts along the interface between the inclusion and the matrix medium. Each part is linear, elastic, homogeneous and isotropic. The non-hypersingular traction boundary integral equation is applied on the crack surfaces; while the traditional displacement boundary integral equation is used on the interface and external boundaries. In the numerical solution procedure, square root shape functions are adopted as to describe the proper asymptotic behavior in the vicinity of the crack-tips. The crack growth is modeled by adding new elements of constant length to the moving crack tip, which is controlled by the fracture criterion based on the maximum circumferential stress. In each time step, the direction and the speed of the crack advance are evaluated. The numerical results of the crack growth path, speed, dynamic stress intensity factors (DSIFs) and dynamic interface tractions for various material combinations and geometries are presented. The effect of the inclusion on the moving crack is discussed.  相似文献   

5.
In this paper, the dual reciprocity boundary element method in the Laplace domain has been developed for the analysis of three-dimensional elastodynamic fracture mechanics mixed-mode problems. The boundary element method is used to calculate the unknowns of transformed boundary displacement and traction and the domain integrals in the elastodynamic equation are transformed into boundary integrals by the use of the dual reciprocity method. The transformed dynamic stress intensity factors are determined by the crack opening displacement (COD) directly in the Laplace domain. By using Durbin's inversion technique, the dynamic stress intensity factors in the time domain are obtained. Several numerical examples are presented to demonstrate the good agreement with existing solutions.  相似文献   

6.
In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.  相似文献   

7.
This paper presents a direct traction boundary integral equation method (DTBIEM) for two-dimensional crack problems of materials. The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces. The displacements and tractions were used as unknowns on the external boundary, while the relative crack opening displacement (RCOD) was chosen as unknowns on either side of crack surfaces to keep the single-domain merit. Only one side of the crack surfaces was concerned and needed to be discretized, thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method (DBEM). A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly, and the SIFs were evaluated by the extrapolation of the RCOD. Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.  相似文献   

8.
In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behaviour is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A centre-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.  相似文献   

9.
A new meshless method for computing the dynamic stress intensity factors (SIFs) in continuously non-homogeneous solids under a transient dynamic load is presented. The method is based on the local boundary integral equation (LBIE) formulation and the moving least squares (MLS) approximation. The analyzed domain is divided into small subdomains, in which a weak solution is assumed to exist. Nodal points are randomly spread in the analyzed domain and each one is surrounded by a circle centered at the collocation point. The boundary-domain integral formulation with elastostatic fundamental solutions for homogeneous solids in Laplace-transformed domain is used to obtain the weak solution for subdomains. On the boundary of the subdomains, both the displacement and the traction vectors are unknown generally. If modified elastostatic fundamental solutions vanishing on the boundary of the subdomain are employed, the traction vector is eliminated from the local boundary integral equations for all interior nodal points. The spatial variation of the displacements is approximated by the MLS scheme.  相似文献   

10.
For the solution of problems in fracture mechanics by the boundary element method usually the subregion technique is employed to decouple the crack surfaces. In this paper a different procedure is presented. By using the displacement boundary integral equation on one side of the crack surface and the hypersingular traction boundary integral equation on the opposite side, one can renounce the subregion technique.An essential point when applying the traction boundary integral equation is the treatment of the thus arising hypersingular integrals. Two methods for their numerical computation are presented, both based on the finite part concept. One may either scale the integrals properly and use a specific quadrature rule, or one may apply the definition formula for finite part integrals and transform the resulting regular integrals into the usual element coordinate system afterwards. While the former method is restricted to linear or circular approximations of the boundary geometry, the latter one allows for arbitrary curved (e.g. isoparametric) elements. Two numerical examples are enclosed to demonstrate the accuracy of the two boundary integral equations technique compared with the subregion technique.  相似文献   

11.
A time-domain boundary element method (BEM) for transient dynamic crack analysis in two-dimensional, homogeneous, anisotropic and linear elastic solids is presented in this paper. Strongly singular displacement boundary integral equations (DBIEs) are applied on the external boundary of the cracked body while hypersingular traction boundary integral equations (TBIEs) are used on the crack-faces. The present time-domain method uses the quadrature formula of Lubich for approximating the convolution integrals and a collocation method for the spatial discretization of the time-domain boundary integral equations. Strongly singular and hypersingular integrals are dealt with by a regularization technique based on a suitable variable change. Discontinuous quadratic quarter-point elements are implemented at the crack-tips to capture the local square-root-behavior of the crack-opening-displacements properly. Numerical examples for computing the dynamic stress intensity factors are presented and discussed to demonstrate the accuracy and the efficiency of the present method.  相似文献   

12.
An analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening and sliding modes) using complex functions theory is presented. The crack is in infinite medium and subjected to the plane harmonic waves. The basis of the method is grounded on solving the two‐dimensional wave equations in the frequency domain and complex plane using mapping technique. In this domain, solution of the resulting partial differential equations is found in the series of the Hankel functions with unknown coefficients. Applying the boundary conditions of the crack, these coefficients are calculated. After solving the wave equations, the stress and displacement fields, also the J‐integrals are obtained. Finally using the J‐integrals, dynamic stress intensity factors are calculated. Numerical results including the values of dynamic stress intensity factors for a crack in an infinite medium subjected to the dilatation and shear harmonic waves are presented.  相似文献   

13.
The present paper is concerned with the effective numerical implementation of the two-dimensional dual boundary element method, for linear elastic crack problems. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. Both crack surfaces are discretized with discontinuous quadratic boundary elements; this strategy not only automatically satisfies the necessary conditions for the existence of the finite-part integrals, which occur naturally, but also circumvents the problem of collocation at crack tips, crack kinks and crack-edge corners. Examples of geometries with edge, and embedded crack are analysed with the present method. Highly accurate results are obtained, when the stress intensity factor is evaluated with the J-integral technique. The accuracy and efficiency of the implementation described herein make this formulation ideal for the study of crack growth problems under mixed-mode conditions.  相似文献   

14.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The topic of hypersingular boundary integral equations is a rapidly developing one due to the advantages which this kind of formulation offers compared to the standard boundary integral one. In this paper the hypersingular formulation is developed for time-domain antiplane elastodynamic problems. Firstly, the gradient representation is found from the displacement one, removing the strong singularities (Dirac's delta functions) which arise due to the differentiation process. The gradient representation is carried to the boundary through a limiting process and the resulting equation is shown to be consistent with the static formulation. Next, the numerical treatment of the traction boundary integral equation and its application to crack problems are presented. For the boundary discretization, conforming quadratic elements are tested, which are introduced in this paper for the first time, and it is shown that the results are very good in spite of the lesser number of unknowns of this approach in comparison to the non-conforming element alternative. A procedure is devised to numerically perform the hypersingular integrals that is both accurate and versatile. Several crack problems are solved to show the possibilities of the method. To this end both straight and curved elements are employed as well as regular and distorted quarter point elements.  相似文献   

16.
Abstract

A novel integral equation method is developed in this paper for the analysis of two‐dimensional general anisotropic elastic bodies with cracks. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh's formalism for anisotropic elasticity in conjunction with Cauchy's integral formula. The proposed boundary integral equations contain boundary displacement gradients and tractions on the non‐crack boundary and the dislocations on the crack lines. In cases where only the crack faces are subjected to tractions, the integrals on the non‐crack boundary are non‐singular. The boundary integral equations can be solved using Gaussian‐type integration formulas directly without dividing the boundary into discrete elements. Numerical examples of stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.  相似文献   

17.
The present paper is concerned with the formulation of the singularity subtraction technique in the dual boundary element analysis of the mixed-mode deformation of general homogeneous cracked plates.The equations of the dual boundary element method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation is applied on the other, general mixed-mode crack problems can be solved in a single region boundary element formulation, with both crack surfaces discretized with discontinuous quadratic boundary elements.The singularity subtraction technique is a regularization procedure that uses a singular particular solution of the crack problem to introduce the stress intensity factors as additional problem unknowns. The single-region boundary element analysis of a general crack problem restricts the availability of singular particular solutions, valid in the global domain of the problem. A modelling strategy, that considers an automatic partition of the problem domain in near-tip and far-tip field regions, is proposed to overcome this difficulty. After the application of the singularity subtraction technique in the near-tip field regions, regularized locally with the singular term of the Williams' eigenexpansion, continuity is restored with equilibrium and compatibility conditions imposed along the interface boundaries. The accuracy and efficiency of the singularity subtraction technique make this formulation ideal for the study of crack growth problems under mixed-mode conditions.  相似文献   

18.
Stress intensity factors of bimaterial interface cracks are evaluated based on the interaction energy release rates. The interaction energy release rate is defined based on the energy release rates of a cracked body, corresponding to two independent loading conditions, actual field and an auxiliary field, and is related to the sensitivities of the potential energies for crack extensions. The potential energy of a cracked body is expressed with a domain integral, which is converted to a boundary integral expression by applying the divergence theorem. By differentiating this expression with the crack length, a boundary integral expression for the interaction energy release rate is obtained. The boundary integral representation for the interaction energy release rate involves the displacement, the traction, and their sensitivity coefficients with respect to the crack length. The boundary element sensitivity analyses are used to calculate these quantities accurately. A regularized boundary integral equation relating the boundary displacement and traction is differentiated with respect to an arbitrary shape parameter to derive the regularized boundary integral equation for the sensitivity coefficients of the boundary displacement and traction. The proposed approach is applied to several cracks in dissimilar media and the results are compared with those obtained by the conventional approach based on the extrapolation method. The analytical displacement and stress solutions for an interface crack between two infinite dissimilar media subjected to uniform stresses at infinity are used to give the auxiliary field, in which the values of the stress intensity factors are known. It is demonstrated that the present method can give accurate results for the stress intensity factors of various bimaterial interface cracks under coarse mesh discretizations.  相似文献   

19.
A numerical procedure is proposed to compute the T-stress for two-dimensional cracks in general anisotropic elastic media. T-stress is determined from the sum of crack-face displacements which are computed via an integral equation of the boundary data. To smooth out the data in order to perform accurately numerical differentiation, the sum of crack-face displacement is established in a weak-form integral equation in which the integration domain is simply the crack-tip element. This weak-form integral equation is then solved numerically using standard Galerkin approximation to obtain the nodal values of the sum of crack-face displacements. The procedure is incorporated in a weakly-singular symmetric Galerkin boundary element method in which all integral equations for the traction and displacement on the boundary of the domain and on the crack faces include (at most) weakly-singular kernels. To examine the accuracy and efficiency of the developed method, various numerical examples for cracks in infinite and finite domains are treated. It is shown that highly accurate results are obtained using relatively coarse meshes.  相似文献   

20.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号