首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large‐scale wave‐propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with nonreflective boundary treatments to limit the size of the computational domain without losing accuracy or computational efficiency, which remains a challenging task. In this paper, we present a combination of a nodal discontinuous Galerkin method with high‐order absorbing boundary conditions for cuboidal computational domains. Compatibility conditions are derived for high‐order absorbing boundary conditions intersecting at the edges and the corners of a cuboidal domain. We propose a GPU implementation of the computational procedure, which results in a multidimensional solver with equations to be solved on 0D, 1D, 2D, and 3D spatial regions. Numerical results demonstrate both the accuracy and the computational efficiency of our approach.  相似文献   

2.
In this paper, we consider the problem of constructing reduced‐order models of a class of time‐dependent randomly parametrized linear partial differential equations. Our objective is to efficiently construct a reduced basis approximation of the solution as a function of the spatial coordinates, parameter space, and time. The proposed approach involves decomposing the solution in terms of undetermined spatial and parametrized temporal basis functions. The unknown basis functions in the decomposition are estimated using an alternating iterative Galerkin projection scheme. Numerical studies on the time‐dependent randomly parametrized diffusion equation are presented to demonstrate that the proposed approach provides good accuracy at significantly lower computational cost compared with polynomial chaos‐based Galerkin projection schemes. Comparison studies are also made against Nouy's generalized spectral decomposition scheme to demonstrate that the proposed approach provides a number of computational advantages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical analysis of linear visco‐elastic materials requires robust and stable methods to integrate partial differential equations in both space and time. In this paper, symmetric space–time finite element operators are derived for the first time for elementary linear elastic spring and linear viscous dashpot. These can thereafter be assembled in parallel and in series to simulate an arbitrarily complex linear visco‐elastic behaviour. The flexibility of the proposed method allows the formulation of the behaviour, which closely reflects physical processes. An efficient algorithm is proposed to use the generated elementary matrices in a way that is comparable with finite difference schemes, in terms of both processor and memory costs. This unconditionally stable and convergent procedure is equally valid for space domains in which geometry or material properties evolve with time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Numerical schemes for the approximative solution of advection–diffusion–reaction equations are often flawed because of spurious oscillations, caused by steep gradients or dominant advection or reaction. In addition, for strong coupled nonlinear processes, which may be described by a set of hyperbolic PDEs, established time stepping schemes lack either accuracy or stability to provide a reliable solution. In this contribution, an advanced numerical scheme for this class of problems is suggested by combining sophisticated stabilization techniques, namely the finite calculus (FIC‐FEM) scheme introduced by Oñate et al. with time‐discontinuous Galerkin (TDG) methods. Whereas the former one provides a stabilization technique for the numerical treatment of steep gradients for advection‐dominated problems, the latter ensures reliable solutions with regard to the temporal evolution. A brief theoretical outline on the superior behavior of both approaches will be presented and underlined with related computational tests. The performance of the suggested FIC‐TDG finite element approach will be discussed exemplarily on a bioregulatory model for bone fracture healing proposed by Geris et al., which consists of at least 12 coupled hyperbolic evolution equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In the present paper one‐step implicit integration algorithms for non‐linear elastodynamics are developed. The discretization process rests on Galerkin methods in space and time. In particular, the continuous Galerkin method applied to the Hamiltonian formulation of semidiscrete non‐linear elastodynamics lies at the heart of the time‐stepping schemes. Algorithmic conservation of energy and angular momentum are shown to be closely related to quadrature formulas that are required for the calculation of time integrals. We newly introduce the ‘assumed strain method in time’ which enables the design of energy–momentum conserving schemes and which can be interpreted as temporal counterpart of the well‐established assumed strain method for finite elements in space. The numerical examples deal with quasi‐rigid motion as well as large‐strain motion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Applications where the diffusive and advective time scales are of similar order give rise to advection–diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non‐Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame‐invariant form of Cattaneo's hyperbolic diffusion relation within a spacetime discontinuous Galerkin advection–diffusion model. An h‐adaptive spacetime meshing procedure supports an asynchronous, patch‐by‐patch solution procedure with linear computational complexity in the number of spacetime elements. This localized solver enables the selective application of optimization algorithms in only those patches that require inequality constraints to ensure a non‐negative concentration solution. In contrast to some previous methods, we do not modify the numerical fluxes to enforce non‐negative concentrations. Thus, the element‐wise conservation properties that are intrinsic to discontinuous Galerkin models are defined with respect to physically meaningful Riemann fluxes on the element boundaries. We present numerical examples that demonstrate the effectiveness of the proposed model, and we explore the distinct features of hyperbolic advection–diffusion response in subcritical and supercritical flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.  相似文献   

9.
This paper examines the efficient integration of a Symmetric Galerkin Boundary Element Analysis (SGBEA) method with multi‐zone resulting in a fully symmetric Galerkin multi‐zone formulation. In a previous approach, a Galerkin multi‐zone method was developed where the interfacial nodes are assigned degrees of freedom globally so that the displacement and traction continuity across the zonal interfaces are addressed directly. However, the method was only block symmetric. In the present paper, two new approaches are derived. In the first approach, the degrees of freedom for a particular zone are assigned locally, independent of the other zones. The usual linear set of equations, from the symmetric Galerkin approach, are augmented with an additional set of equations generated by the Galerkin form of hypersingular boundary integrals along the interfaces. Zonal continuity is imposed externally through Lagrange's constraints. This approach is also only block symmetric. The second approach derived from the first, uses the continuity constraints at the zonal assembly level to achieve full symmetry. These methods are compared to collocation multi‐zone and an earlier formulation, on two elasticity problems from the literature. It was found that the second method is much faster than the collocation method for medium to large scale problems, primarily due to its complete symmetry. It is also observed that these methods spend marginally more time on integration than the previous Galerkin multi‐zone method but are better suited to parallel processing. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
In the interest of computational efficiency this paper describes the implementation of a coupled thermo‐damage constitutive model into a coupled time‐stepping analysis using fractional step methods. To begin it is demonstrated that a thermo‐damage model can be presented in a thermodynamic framework with the evolution equations satisfying the first and second laws of thermodynamics. The equations of evolution are partitioned in two ways, thus defining two fractional step methods: an isothermal method and an isentropic method. When implemented into a time‐stepping algorithm the isentropic method maintains a precise energy balance for the entire analysis where as the isothermal method can only provide an energy balance at the end of each thermal time step. In addition, a stability analysis shows that the isentropic analysis is unconditionally stable while a isothermal analysis is at best conditionally stable. Simulations of thermal fracture in a restrained specimen under heat show stable growth of damage to failure. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, stabilized Crank-Nicolson/Adams-Bashforth schemes are presented for the Allen-Cahn and Cahn-Hilliard equations. It is shown that the proposed time discretization schemes are either unconditionally energy stable, or conditionally energy stable under some reasonable stability conditions. Optimal error estimates for the semi-discrete schemes and fully-discrete schemes will be derived. Numerical experiments are carried out to demonstrate the theoretical results.  相似文献   

12.
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Weight‐adjusted inner products are easily invertible approximations to weighted L2 inner products. These approximations can be paired with a discontinuous Galerkin (DG) discretization to produce a time‐domain method for wave propagation which is low storage, energy stable, and high‐order accurate for arbitrary heterogeneous media and curvilinear meshes. In this work, we extend weight‐adjusted DG methods to the case of matrix‐valued weights, with the linear elastic wave equation as an application. We present a DG formulation of the symmetric form of the linear elastic wave equation, with upwind‐like dissipation incorporated through simple penalty fluxes. A semidiscrete convergence analysis is given, and numerical results confirm the stability and high‐order accuracy of weight‐adjusted DG for several problems in elastic wave propagation.  相似文献   

14.
The consistency and stability of a Thomas–Gladwell family of multistage time‐stepping schemes for the solution of first‐order non‐linear differential equations are examined. It is shown that the consistency and stability conditions are less stringent than those derived for second‐order governing equations. Second‐order accuracy is achieved by approximating the solution and its derivative at the same location within the time step. Useful flexibility is available in the evaluation of the non‐linear coefficients and is exploited to develop a new non‐iterative modification of the Thomas–Gladwell method that is second‐order accurate and unconditionally stable. A case study from applied hydrogeology using the non‐linear Richards equation confirms the analytic convergence assessment and demonstrates the efficiency of the non‐iterative formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider and examine alternate finite element computational strategies for time‐dependent Navier–Stokes equations describing high‐speed compressible flows with shocks in a viscous and conducting medium, with the ultimate objective of establishing the desired features of a general mathematical and computational framework for such initial value problems (IVP) in which: (a) the numerically computed solutions are in agreement with the physics of evolution described by the governing differential equations (GDEs) i.e. the IVP, (b) the solutions are admissible in the non‐discretized form of the GDEs in the pointwise sense (i.e. anywhere and everywhere) in the entire space–time domain, and hence in the integrated sense as well, (c) the numerical approximations progressively approach the same global differentiability in space and time as the theoretical solutions, (d) it is possible to time march the solutions (this is essential for efficiency as well as ensuring desired accuracy of the computed solution for the current increment of time, i.e. to minimize the error build up in the time marching process), (e) the computational process is unconditionally stable and non‐degenerate regardless of the choice of discretization, nature of approximations and their global differentiability and the dimensionless parameters influencing the physics of the process, (f) there are no issues of stability, CFL number limitations and (g) the mathematical and computational methodology is independent of the nature of the space–time differential operators. We consider one‐dimensional compressible flow in a viscous and conducting medium with shocks as model problems to illustrate various features of the general mathematical and computational framework used here and to demonstrate that the proposed framework is general and is applicable to all IVP. The Riemann shock tube with a single diaphragm serves as a model problem. The specific details presented in the paper discuss: (1) Choice of the form of the GDEs, i.e. strong form or weak form. (2) Various choices of variables. The paper establishes and considers density, velocity and temperature as variables of choice. (3) Details of the space–time least squares (LS) integral forms (meritorious over all others in all aspects) are presented and choice of approximation spaces are discussed. (4) In all numerical studies we consider a viscous and conducting medium with ideal gas law, however results are also presented for non‐conducting medium. Extension of this work to real gas models will be presented in a separate paper. It is worth noting that when the medium is viscous and conducting, the solutions of gas dynamics equations are analytic. (5) It is also significant to note that upwinding methods based on addition of artificial diffusion such as SUPG, SUPG/DC, SUPG/DC/LS and their many variations are neither needed nor used in this present work. (6) Numerical studies are aimed at resolving the localized details of the shock structure, i.e. shock relations, shock width, shock speed, etc. as well as the over all global behaviour of the solution in the entire space–time domain. (7) Numerical studies are presented for Riemann shock tube for high Mach number flows with special emphasis also on time accuracy of the evolution which is ensured by requiring that the approximations for each increment of time satisfy non‐discretized form of the GDEs in the pointwise sense, and hence in the integrated sense as well. (8) Comparisons are made with published results as well as theoretical solutions (when possible). It is established that space–time least squares processes are the only processes that yield variationally consistent space–time integral forms, and hence unconditionally non‐degenerate space–time computational processes, which when considered in higher‐order scalar product spaces provide the desired mathematical framework in which progressively higher‐order global differentiability solutions in space and time yield the same characteristics as the theoretical solutions of the IVP in all aspects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes an energy‐based measure for the evaluation of the local truncation error of two‐level one‐step integration schemes. The measure applies to multiple degree of freedom systems and does not necessarily require modal reduction to a scalar model; it naturally handles the structural damping and external forcing terms that are generally and mistakenly neglected in error analyses, and it segregates the error associated with the free and forced response components of the problem. To illustrate the approach, two examples associated with the application of the trapezoidal scheme and of a high‐order scheme proposed in the literature are analyzed. The latter reveals the shortcomings of the standard approach that is based on the undamped/unforced linear oscillator and therefore highlights the need for the proposed framework. Indeed, the scheme order of accuracy is below expectation when structural damping or external forcing is considered, in the numerically dissipative setting. Developments on the basis of the time discontinuous Galerkin (TDG) method are then proposed to recover the scheme high‐order accuracy. Additionally, they show the similarity that exists between schemes related to the TDG method and the ones obtained by integration by parts of the equation of motion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The long-term dynamic response of non-linear geometrically exact rods under-going finite extension, shear and bending, accompanied by large overall motions, is addressed in detail. The central objective is the design of unconditionally stable time-stepping algorithms which exactly preserve fundamental constants of the motion such as the total linear momentum, the total angular momentum and, for the Hamiltonian case, the total energy. This objective is accomplished in two steps. First, a class of algorithms is introduced which conserves linear and angular momentum. This result holds independently of the definition of the algorithmic stress resultants. Second, an algorithmic counterpart of the elastic constitutive equations is developed such that the law of conservation of total energy is exactly preserved. Conventional schemes exhibiting no numerical dissipation, symplectic algorithms in particular, are shown to lead to unstable solutions when the high frequencies are not resolved. Compared to conventional schemes there is little, if any, additional computational cost involved in the proposed class of energy–momentum methods. The excellent performance of the new algorithm in comparison to other standard schemes is demonstrated in several numerical simulations.  相似文献   

18.
An efficient parallel computing method for high‐speed compressible flows is presented. The numerical analysis of flows with shocks requires very fine computational grids and grid generation requires a great deal of time. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed seamlessly in parallel in terms of nodes. Local finite‐element mesh is generated robustly around each node, even for severe boundary shapes such as cracks. The algorithm and the data structure of finite‐element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. The inter‐processor communication is minimized by renumbering the nodal identification number using ParMETIS. The numerical scheme for high‐speed compressible flows is based on the two‐step Taylor–Galerkin method. The proposed method is implemented on distributed memory systems, such as an Alpha PC cluster, and a parallel supercomputer, Hitachi SR8000. The performance of the method is illustrated by the computation of supersonic flows over a forward facing step. The numerical examples show that crisp shocks are effectively computed on multiprocessors at high efficiency. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A Galerkin‐based discretization method for index 3 differential algebraic equations pertaining to finite‐dimensional mechanical systems with holonomic constraints is proposed. In particular, the mixed Galerkin (mG) method is introduced which leads in a natural way to time stepping schemes that inherit major conservation properties of the underlying constrained Hamiltonian system, namely total energy and angular momentum. In addition to that, the constraints on the configuration level and on the velocity/momentum level are fulfilled exactly. The application of the mG method to specific mechanical systems such as the pendulum, rigid body dynamics and the coupled motion of rigid and flexible bodies is presented. Related numerical examples are investigated to evaluate the numerical performance of the mG(1) and mG(2) method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A novel non‐linearly explicit second‐order accurate L‐stable computational methodology for integrating the non‐linear equations of motion without non‐linear iterations during each time step, and the underlying implementation procedure is described. Emphasis is placed on illustrative non‐linear structural dynamics problems employing both total/updated Lagrangian formulations to handle finite deformation hypoelasticity/hypoelasto‐plasticity models in conjunction with a new explicit exact integration procedure for a particular rate form constitutive equation. Illustrative numerical examples are shown to demonstrate the robustness of the overall developments for non‐linear structural dynamics applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号