首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel 1.57 GHz complementary metal–oxide semiconductor inductor–capacitor voltage‐controlled oscillator with the common‐mode replica compensation is introduced for mixed‐signal system‐on‐chip applications. In order to alleviate power line disturbances, the center tap node of differential symmetric inductor and the replica biasing circuit are adopted in the differential voltage regulating unit to reduce power supply sensitivity. In addition, this proposed design also leads to low tuning gain and low power dissipation. The post‐layout simulation results under the Taiwan Semiconductor Manufacturing Company's mixed‐signal 0.18 µm 1P6M process show that the proposed design achieves power supply rejection of ?68.6 dB at low frequencies and 1.2 MHz/V pushing sensitivity. It exhibits phase noise of ?130.6 dBc/Hz at a 1 MHz offset from a 1.57 GHz carrier yet dissipates only 5.58 mW under a 1.8 V power supply. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper introduces two voltage‐controlled memristor‐based reactance‐less oscillators with analytical and circuit simulations. Two different topologies which are R‐M and M‐R are discussed as a function of the reference voltage where the generalized formulas of the oscillation frequency and conditions for oscillation for each topology are derived. The effect of the reference voltage on the circuit performance is studied and validated through different examples using PSpice simulations. A memristor‐based voltage‐controlled oscillator (VCO) is introduced as an application for the proposed circuits which is nano‐size and more efficient compared to the conventional VCOs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A voltage‐controlled ring oscillator with process variation compensation circuits is designed using 0.25 µm CMOS technology. The simulation results show that the proposed ring oscillator increases the guaranteed frequency tuning range by 12% compared to a conventional ring oscillator. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

4.
Dependence of frequency on amplitude and control bias is considered for the cross‐coupled voltage‐controlled oscillator. Closed form expressions are derived for frequency of oscillation as a function of amplitude, for positive and negative control bias voltages. Theory of nonlinear ordinary differential equations is utilized to show that the capacitance–voltage relation is the main cause of frequency shift with amplitude. Furthermore, the case of small amplitudes relative to control voltage is analyzed, and a closed form expression is derived for dependence of frequency on amplitude. This relation is then verified using the concept of effective capacitance. The effective capacitance approach is also used to extend the analysis to large voltage swings. Dependence of frequency on tuner control voltage is calculated for both bias polarities. Implications of the aforementioned equations for voltage‐controlled oscillator performance are discussed. Numerical calculations and simulations are used to compare and verify the closed form equations, showing good agreement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We present a complete analysis of single and concurrent modes in fourth‐order LC‐voltage‐controlled oscillators ( VCOs), which are increasingly applied in dual‐band communication systems. We give a procedure based on the averaging method that simplifies the derivation of the abridged equations, which are derived without resorting to a change of co‐ordinates. The amplitudes of the oscillatory modes in steady state and in transient are found in explicit form. Conditions for the stability of the single and concurrent modes are derived, which apply to any active one‐port dual‐band LC‐VCO and allow one to predict the nonlinearities ensuring the occurrence of a stable concurrent mode. Numerical and experimental results show a good accuracy of the presented formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A low‐jitter and low‐power dissipation delay‐locked loop (DLL) is presented. A proposed multi‐band voltage control delay unit (MVCDU) is employed to extend the operation frequency of the DLL by controlling the delay cell within the MVCDU. The jitter of DLL is reduced due to MVCDU's low sensitivity. The delay cell in the MVCDU employs a differential configuration to further reduce the noise impact from the fluctuation in the supply and ground voltage. The operating frequency of the proposed DLL ranges from 120 to 420 MHz. The proposed design has been fabricated in a TSMC 0.18µm CMOS process. The measured RMS and peak‐to‐peak jitters are 4.86 and 34.55 ps, respectively, at an operating frequency of 300 MHz. The power dissipation is below 14.85 mW at an operating frequency of 420 MHz. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new current‐mode automatic frequency tuning system is proposed in this paper. The system is based on the master–slave technique and is suitable for integrated current‐mode filters based on current mirrors. Automatic control is accomplished by controlling the bias current of the current mirrors employed in the master and slave filters. The proposed scheme has been applied in the leapfrog and wave filters and the corresponding simulation results confirm its validity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a new additional perturbation control method for suppressing low‐frequency oscillation in voltage‐mode H‐bridge DC–AC inverter. The stability boundary of the H‐bridge inverter is investigated from its small‐signal averaged model. High input voltage and light load would cause low‐frequency oscillation in this system. To this end, a filter‐based perturbation control (FBPC) is proposed for eliminating this oscillation, by using an analog filter to extract the unexpected signal and applying it to the control loop. Theoretical results show a larger stability range of the controlled system with the proposed FBPC. The simulation and experiment results show that the proposed controller can control the low‐frequency oscillation in H‐bridge DC–AC inverter well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of parameter mismatches on the output waveforms of a popular voltage‐controlled oscillator is investigated, schematizing the circuit as a system of two mutually coupled oscillators, whose describing equations are derived in a perturbation form. The circuit is studied using the method of two time‐scales showing the existence of synchronization phenomena leading in presence of mismatches to a locking frequency, which significantly differs from the natural frequencies of the tanks, and to an oscillation amplitude different from that of the symmetric case. We also show that in‐phase and quadrature oscillations at the drain nodes can be generated with a proper parameter setting. Circuit simulations confirm the presence of a synchronized oscillation, which is consistent with the prediction of the presented analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present for the first time a family of memristor‐based reactance‐less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The paper presents the structure and the principle of operation of the ‘improved’ Howland current pumps (or voltage‐controlled current sources (VCCSs) for a grounded load). In particular, under review is the VCCS employing power operational amplifier (op amp) and the VCCS using low power op amp and an additional power transistor, extending working dynamic range. On the basis of analysis of the operational principle, the equations for transfer functions of both circuits and formulas for the related dynamic electrical parameters are obtained. Moreover, using these formulas, a design procedure is developed, and recommendations for simulation modelling are given. The efficiency of the proposed procedure is verified by simulation modelling and experimental testing of sample electronic circuits of VCCSs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A configuration using current feedback amplifiers has been presented, which is capable of realizing linear, positive/negative voltage‐controlled resistance, voltage‐controlled inductance and voltage‐controlled frequency‐dependent negative conductance in floating form (and thereby, also in grounded form) from the same structure. The workability of the proposed configuration has been demonstrated by hardware implementation results using AD 844‐type current feedback op‐amps (CFOAs) and BFW‐11‐type JFETs and the workability in high‐frequency range has been demonstrated by SPICE simulation using CMOS CFOAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a new model for the frequency of oscillation, the oscillation amplitude and the phase‐noise of ring oscillators consisting of MOS‐current‐mode‐logic delay cells. The numerical model has been validated through circuit simulations of oscillators designed with a typical 130 nm CMOS technology. A design flow based on the proposed model and on circuit simulations is presented and applied to cells with active loads. The choice of the cell parameters that minimize phase‐noise and power consumption is addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Employing a state‐variable synthesis, a number of new current‐mode oscillators with explicit current output have been derived, which can be practically implemented from commercially available current‐feedback op‐amps (CFOA). The workability of the proposed structures has been confirmed by experimental results using AD844‐type CFOAs and some sample results have been presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
S-C波段微波频率综合器在超宽带超外差接收机中起着本振作用,其相位噪声、频率分辨率和输出功率直接影响接收机的动态范围、接收灵敏度和动目标显示能力等重要参数。采用电调谐器件YIG振荡器作为关键微波部件,利用其宽带连续可调谐特性和低相位噪声特性,基于小数分频法单环频率合成技术实现S-C波段微波频率综合器。结果表明,该微波频率综合器具有微波频段宽、相位噪声低、频率分辨率高等优点,工作性能稳定可靠,可满足实际工程应用。该设计方法对基于YIG振荡器的其他频段高性能微波频率综合器设计具有一定的参考价值。  相似文献   

17.
Abstract

There are many possible uses for ferroelectric field effect transistors. To understand their application, a fundamental knowledge of their basic characteristics must first be found. In this research, the current and voltage characteristics of a FFET are described from empirical data. The effective gate capacitance and charge are derived from experimental data on an actual ferroelectric transistor. A general equation [1] for a MOSFET is used to derive the internal characteristics of the transistor. Experimental data derived from a Radiant Technologies[2] FFET is used to calculate the internal transistor characteristics using fundamental MOSFET equations.

The drain current was measured under several different gate and drain voltages and with different initial polarizations on the ferroelectric material. Two polarization conditions were used. One with the gate ferroelectric material polarized with a +9.0 volt write pulse and one with a -9.0 volt pulse. The transistor is also simulated using a mathematical model from earlier research [3]. This model accurately predicts the I-V characteristics of the transistor.  相似文献   

18.
This paper proposes an active‐clamping flyback converter using an integrated transformer. The proposed converter is composed of two active‐clamp flyback converters. The presented converter can balance the total load current between secondary sides of two transformers so that the rectifier diode conduction loss is reduced. Also, the main switch of one converter is the auxiliary switch for the other converter, so that only two switches are required and both can achieve zero‐voltage‐switching operation. The two transformers are integrated into one magnetic core; therefore, the volume and copper loss of transformer can be reduced. Detailed analysis and design of this integrated magnetic active‐clamping flyback converter are described. Experimental results are recorded for a prototype converter with an AC input voltage ranging from 85 to 135 V, an output voltage of 24 V and an output current of 5 A, operating at a switching frequency of 100 kHz. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Methods for direct data‐driven tuning of the parameters of precompensators for linear parameter‐varying (LPV) systems are developed. Since the commutativity property is not always satisfied for LPV systems, previously proposed methods for LTI systems that use this property cannot be directly adapted. When the ideal precompensator giving perfect mean tracking exists in the proposed precompensator parameterization, the LPV transfer operators do commute and an algorithm using only two experiments on the real system is proposed. It is shown that this algorithm gives consistent estimates of the ideal parameters despite the presence of stochastic disturbances. For the more general case, when the ideal precompensator does not belong to the set of parameterized precompensators, another technique is developed. This technique requires a number of experiments equal to twice the number of precompensator parameters and it is shown that the calculated parameters minimize the mean‐squared tracking error. The theoretical results are demonstrated in simulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Current mirror is one of the basic building blocks of analog VLSI systems. For high‐performance analog circuit applications, the accuracy and bandwidth are the most important parameters to determine the performance of the current mirror. This paper presents an efficient implementation of a CMOS current mirror suitable for low‐voltage applications. This circuit combines a shunt input feedback, a regulated cascade output and a differential amplifier to achieve low input resistance, high accuracy and high output resistance. A comparison of several architectures of this scheme based on different architectures of the amplifier is presented. The comparison includes: input impedance, output impedance, accuracy, frequency response and settling time response. These circuits are validated with simulation in 0.18µm CMOS TSMC of MOSIS. In this paper, a linear voltage to current converter, based on the adapted current mirror, is proposed. Its static and dynamic behaviour is presented and validated with the same technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号