首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酥朽断裂是如今高压输电线路中复合绝缘子的新型机械故障,现有的研究均集中于酥朽断裂绝缘子芯棒的老化过程和理化特性,但很少有研究在实验室试验中模拟这种现象。建立了一种具有高温,酸腐蚀和高电场强度等多种老化条件的人工加速老化平台,一定程度上模拟了酥朽断裂绝缘子芯棒的典型特征。结果表明,当施加电压数小时后,使用热红外成像仪检测发现温度明显升高。与单一老化应力相比,芯棒样片在多应力条件下的温度高达61℃。此外,采用扫描电子显微镜(SEM),傅立叶变换红外(FTIR)光谱,X射线光电子能谱(XPS)和热重分析(TGA)方法研究了芯棒样片理化特性的变化,并进一步研究了老化过程中发生的反应和不同老化因素之间的作用机制。结果表明,环氧树脂基体被水和硝酸侵蚀。在高电场的存在下,环氧树脂基体进一步降解并蒸发,环氧树脂和玻璃纤维之间的界面分离,伴随着离子交换和水解过程。随着芯棒样片进一步劣化,试样出现明显的碳化通道和电蚀穿孔。与酥朽断裂绝缘子芯棒相比,人工加速老化样品在理化特性上表现出相似的变化趋势,研究结果可为理解复合绝缘子实际运行工况下的多场耦合老化过程提供参考。  相似文献   

2.
由于长期运行在湿热的气候环境下,近年来我国南方地区复合绝缘子异常发热、击穿断裂等故障时有发生,严重威胁了电网的安全稳定运行。为了研究复合绝缘子芯棒的湿热老化特性,首先对芯棒材料进行湿热老化实验,然后利用扫描电镜、红外光谱、热重分析和介电分析等手段对湿热老化和酥朽断裂芯棒进行分析,结果表明:湿热的联合作用能够显著加速芯棒的老化进程,随着湿热老化时间的增加,样品的表面微观形貌、化学基团、热解性能和介电性能均逐渐劣化,其中环氧树脂的碳链和碳氧链的吸收峰、热解剩余质量、介电参数可作为芯棒材料的老化特征参量,用以评估其老化状态;湿热老化和酥朽断裂的芯棒均发生了环氧树脂的劣化分解和玻纤的水解与离子交换反应,环氧树脂和玻纤的劣化程度与老化时长正相关;烘干后芯棒的介电参数显著降低,表明水分入侵对其介电性能具有重要影响,湿热老化充分考虑了这一因素,相比于其他老化方式更加全面合理。  相似文献   

3.
刘博 《电瓷避雷器》2021,(1):234-240
500 kV输电线路复合绝缘子运行10年以上,出现伞裙粉化、对折开裂、异常发热等缺陷.为了分析其中的原因,对故障绝缘子进行外观检查、红外测温、额定拉力试验、硬度测试、机械性能测量、傅里叶红外光谱分析、X射线光电子能谱分析、解剖试验,结果表明500 kV输电线路复合绝缘子在户外环境里长期运行,受到电、光、热、污秽等因素的影响,绝缘子伞裙表面污秽受潮放电,导线电晕放电等将产生高能带电粒子,在放电产生的带电粒子及太阳紫外光子的作用下,硅橡胶材料分子中的Si-O-Si主链和Si-CH3侧链将发生断链,引发硅橡胶性能劣化,表现为粉化、劣化现象;对故障绝缘子发热部位进行解剖,芯棒表面明显酥朽,芯棒缺陷处的玻璃纤维明显裸露,表面存在一定的蚀损痕迹,环氧树脂严重缺损,颜色呈现棕黄色,结合芯棒解剖结果分析异常温升是由于芯棒酥朽老化引起的局部放电等过程产生.  相似文献   

4.
复合绝缘子酥朽断裂和内击穿属于两类严重影响电力系统稳定运行的恶性事故.在对多起酥朽断裂和内击穿事故案例分析过程中,发现二者的故障形貌表现出诸多相似性,进而推测二者存在某种内在关联性.通过对比分析复合绝缘子酥朽断裂和内击穿事故的故障特征、故障机理及发展过程,本文指出,复合绝缘子酥朽断裂和内击穿事故具有相同的故障本质,即由...  相似文献   

5.
在巡线中借助红外测温装置发现了一起复合绝缘子异常发热故障.对故障绝缘子进行了红外和紫外测试、额定拉力测试、解剖观察、扫描电镜、X射线光电子能谱分析等检测试验,结果表明,复合绝缘子处于酥朽老化早期发展阶段,酥朽芯棒表面局部放电电流的热效应、化学效应以及从端部侵入的水分在强电场下的极化损耗共同导致了故障处异常发热.进一步分...  相似文献   

6.
为研究分析河南电网某500 kV重要输电线路复合绝缘子断裂的原因,对断裂复合绝缘子及故障处相邻铁塔上挂网运行的6支复合绝缘子,依照GB/T 19519-2014和DL/T 864-2004进行了机械特性试验、耐应力腐蚀试验和憎水性试验,同时对芯棒进行了材质分析,并对断裂的整支绝缘子进行了解剖分析。试验结果表明,6支绝缘子机械破坏负荷值在0.91 SML以上,憎水性为HC4~HC5级,故障绝缘子试品耐应力腐蚀试验4小时发生断裂,芯棒玻璃纤维硼(B)元素含量为5.8%,同批次6支抽样试品中仅2支通过耐应力腐蚀试验。依照标准并对试验结果进行分析,可得出结论此次断裂原因为芯棒脆断,断裂绝缘子芯棒为非耐酸芯棒,与该绝缘子同批次的产品耐酸性能差。最后,针对此类故障提出了防范措施,以避免此类故障再次发生,确保电网安全稳定运行。  相似文献   

7.
为研究分析某330 kV输电线路复合绝缘子断裂故障的原因,并对故障绝缘子同线路挂网运行复合绝缘子进行试验检测。通过宏观检查、断口分析、渗透检测等方法进行分析可知,此次断裂的主要原因是复合绝缘子在长期运行过程中产生原生宏观缺陷,导致外部环境中的腐蚀介质等进入芯棒部位,通过长期应力和腐蚀性介质作用,当芯棒剩余截面不足以承受重力载荷时,造成芯棒及外部硅橡胶撕裂,导致绝缘子断裂失效。最后,针对此类故障对运行中的绝缘子提出更换及跟踪的建议,以避免同类故障再次发生,确保电网安全运行。  相似文献   

8.
沿海线路复合绝缘子长期受高盐雾、海风侵蚀,为了有效判定沿海线路复合绝缘子运行状态,对沿海某500 kV线路开展了无人机复合绝缘子红外测温,发现部分复合绝缘子多部位出现异常发热,1月后复测发现非高压端发热消失,仅剩高压端仍有温升。针对此现象抽取了8支异常发热复合绝缘子试品进行试验分析,包括外观检查、红外测试、芯棒剖检、水扩散试验等。试验结果表明绝缘子发热均位于护套表层,非高压端发热现象由复合绝缘子表面积污引起,高压端发热主要由端部高场强、积污共同作用引发,绝缘子芯棒内部无酥朽缺陷,绝缘子机械性能良好,短期内仍满足运行要求。针对此次复合绝缘子发热提出如下建议:该线路虽仅运行7年,但外观检查发现复合绝缘子伞套材料粉化严重,同时存在部分绝缘子局部芯棒-护套粘结不良缺陷,建议于下次综合检修时全部予以更换;沿海线路长期处于高盐雾、高湿度环境下,需定期对复合绝缘子开展带电检测,并依据检测情况适当缩短复合绝缘子运行年限。  相似文献   

9.
为了深入揭示复合绝缘子脆断机理并提出预防措施,分析了一起500 kV复合绝缘子脆断事故,采集故障绝缘子与正常绝缘子样本进行对比试验。对样本绝缘子进行外观检查、解剖测试、拉力和耐应力腐蚀测试、憎水性测试等试验,并对试验结果进行实验室条件下的分析。结果表明:故障复合绝缘子存在3层较为明显的光滑断面,且断面处芯棒与硅橡胶护套交界面处存在硅橡胶粉化层;6只试验绝缘子只有2只通过耐应力腐蚀试验;试验绝缘子憎水性等级在HC4~HC5之间;元素分析发现脆断绝缘子芯棒中硼元素含量较高,结合测试结果可知芯棒为非耐酸芯棒。从结构设计、密封性能和芯棒材料的耐酸性能等方面对芯棒的脆断机理进行了分析,并提出了预防复合绝缘子脆断的措施。  相似文献   

10.
复合绝缘子芯棒断裂事故严重影响电力系统运行的稳定性。当前,针对复合绝缘子芯棒断裂原因的研究往往局限于对单一因素的研究,难以将其应用于实际事故的诊断。提出了一种用于诊断复合绝缘子断裂故障的综合诊断流程,这种诊断流程以断裂复合绝缘子的检测为基础,再综合考虑同批次复合绝缘子的运行情况、环境因素、历史因素,进而得到较为全面、可靠的诊断结论。应用该诊断流程对河南省某交流500 kV线路发生的一起复合绝缘子芯棒断裂事故进行了事故诊断,诊断结果表明,复合绝缘子轴向电场分布不均匀和伞裙护套污秽严重是造成此次事故的主要原因,同时,不排除因为复合绝缘子芯棒和伞裙护套粘接性缺陷而造成电蚀损的原因。  相似文献   

11.
复合绝缘子芯棒脆断原因分析   总被引:3,自引:2,他引:1  
分析了河南省2起220kV输电线路复合绝缘子芯棒断裂掉串的原因。断串均发生在绝缘子的高压端,端口垂直于芯棒轴线,断口大部分光滑平整;产品采用内锲式连接工艺、室温硫化硅橡胶封堵和普通芯棒;发生断串的档距都接近700 m,属于大档距。结合拉力抽检实验,提出220kV以上输电线路,应采用压接式复合绝缘子,其端部采用高温硫化硅橡胶、多层密封工艺,采用耐酸芯棒;对于大跨越线路段,全部采用双悬垂串、"V"形串或"八"字形串绝缘子,并尽可能采用双独立挂点。  相似文献   

12.
由于复合绝缘子出现鸟啄、异常发热、酥朽断裂等运行问题,研究人员尝试采用新型脂环族环氧树脂材料代替常用的硅橡胶.为了评估脂环族环氧树脂的综合性能,通过脂环族环氧树脂和硅橡胶的憎水性、憎水迁移性、耐漏电起痕、介电常数、介电损耗、平均断裂能量等试验数据对比研究了二者的运行性能.研究结果表明相比于硅橡胶材料,脂环族环氧树脂材料...  相似文献   

13.
500kV棒形悬式复合绝缘子芯棒脆断的预防措施   总被引:16,自引:3,他引:13  
对500kV复合绝缘子芯棒脆断事故的发生原因进行了分析,指出芯棒断裂是由于绝缘子电压分布严重不均及均压环设计、安装不规范引起导线端电场畸变所致。通过对原线路双联悬垂复合绝缘子下垂式线夹挂点进行"八"字形改造;利用下垂式线夹缩短的距离在导线侧增挂玻璃绝缘子;新建线路采用特制复合绝缘子与玻璃绝缘子组合方式,使复合绝缘子均压环,接头连接处远离高压端,改善了复合绝缘子的电场分布,降低了复合绝缘子导线端承受的电压,消除了畸变电场,避免了棒形悬式复合绝缘子芯棒脆断,取得了良好的效果。  相似文献   

14.
沿海电网110kV复合绝缘子断裂事故原因分析   总被引:2,自引:2,他引:0  
2009年6月份山东东营沿海电网发生了2起110 kV复合绝缘子断裂事故,给沿海电网造成了严重危害,影响了电网的安全运行。两次事故的复合绝缘子连接结构均为早期内锲式连接结构,一种断裂是在芯棒劈缝端部;另一种是在劈缝沿轴线方向发展最终断裂。事故主要原因是:内锲结构芯棒端部被锲件扩开后,芯棒事实上已被破坏,在端部形成了应力集中,在受力之后,芯棒与锲子间发生微小位移,受损的芯棒纤维断裂增加;另外端部密封不好,高盐、高酸等腐蚀性气体进入了锯开的缝隙,玻璃纤维对酸敏感,它们接触产生特定离子交换在玻璃纤维表面产生作用力,产生了螺旋裂纹,导致最后断裂。  相似文献   

15.
进口500kV复合绝缘子断裂原因分析与研究   总被引:3,自引:1,他引:2  
对X.M公司、M.K公司和D.H公司产500 kV复合绝缘子的断裂原因分析、试验、研究、论证和模拟仿真电场分布理论计算,结果表明:X.M公司的复合绝缘子存在严重的质量问题;M.K公司的复合绝缘子在采取措施后可以继续使用;D.H公司非标加工的500kV/300kN级复合绝缘子,其芯棒密实性、渗透性能不符合标准要求;建议500 kV复合绝缘子应选用耐酸芯棒,优质、合理的硅橡胶配比胶料,经高温硫化的伞套材料;采用迷宫形端部金具密封结构及高温硫化硅橡胶模压密封,且护套整体厚度至少≥5 mm;对500 kV复合绝缘子下端部50 cm区域内适当增加护套厚度;对均压环的环径和管径大小最佳尺寸以及安装位置,还需试验验证,以优化合理配置均压环,确保有效提高复合绝缘子的使用寿命,确保500 kV线路电网的安全运行。  相似文献   

16.
近年来我国复合绝缘子由于芯棒发热导致异常温升的故障时有发生,给电网安全运行带来隐患.为了研究芯棒发热的热传导特性,以及复合绝缘子内外温度的关系,笔者通过理论推导,建立了芯棒发热的热传导模型,并开展仿真与实验研究.结果 表明,当复合绝缘子芯棒发热时,硅橡胶护套中径向温度成对数分布,芯棒表面温度与护套表面温度为一次函数关系...  相似文献   

17.
为实现劣化绝缘子快速、智能化检测,降低输电线路的事故隐患,本文基于电场分布测量法原理设计了一种操作简便、成本低廉、适用性强的绝缘子带电检测装置。通过ANSYS有限元软件仿真计算了检测装置自身、劣化绝缘子位置和缺陷类型对绝缘子串电场分布的影响,并利用"相邻作差法"进一步处理电场畸变数据。仿真结果显示,检测装置的存在不影响对绝缘子的电场分布趋势。最后现场试验表明,该检测设备能在绝缘子串上平滑轻巧地移动,对低(零)值瓷绝缘子及复合绝缘子芯棒导通缺陷均能有效识别,能提高输电线路劣化绝缘子的检测效率。  相似文献   

18.
复合绝缘子芯棒是由纤维束浸渍树脂拉挤固化成型的。复合绝缘子在运行过程中,由于风等因素的影响而引起振动,在芯棒与金具的交接部位,因芯棒中的纤维受力不均,在纤维和树脂间出现了层间界面,这就存在着振动蠕变现象。因此有必要进行复合绝缘子振动蠕变试验。根据易振区线路上架空导线风振动实际情况确定出合理的试验参数;静载荷不低于复合绝缘子额定机械应力的20%~25%;振动角为其最大振动角波动范围平均值,振动次数应以绝缘子振动角大于5′的振动时间、相应的振动频率以及复合绝缘子的运行期限来进行选取。通过对复合绝缘子进行的振动蠕变试验,可以认为,在其芯棒与金具交接部位存在着振动蠕变现象,但对组装工艺先进的产品的机械性能影响较小。  相似文献   

19.
为进一步明确线路柱式复合绝缘子设计原则,验证现有国产环氧玻璃纤维芯棒“损伤极限”,用WDW电子万能材料试验机和按近似水平安装的线路柱式复合绝缘子实际运行工况分别对φ60mm、φ70mm环氧玻璃纤维芯棒进行了弯曲负荷性能测定和分析,认为,φ60mm、φ70mm环氧玻璃纤维芯棒自由端偏移量突变点分别出现在7kN和9kN,其预设损伤限分别为300.7 MPa和234.4MPa。提出用环氧玻璃纤维芯棒作承力件,其机械破坏特性不宜按瓷绝缘子的额定机械破坏负荷来表征,应按照最大设计弯曲负荷表征。芯棒内部出现损伤,在短期内不影响绝缘子的机械强度,但在各种复杂机电应力的作用下,可能会影响其长期运行性能。  相似文献   

20.
介绍了在芯棒中植入光纤光栅的复合绝缘子,并通过光纤光栅来在线监测复合绝缘子芯棒应力的变化,从而用于实时监测复合绝缘子的运行状态。先后对光纤光栅复合绝缘子进行了实验室应力测量试验和110 kV输电线路挂网试验,试验结果表明:光传感器能用于复合绝缘子芯棒应力的测量,可实时监测复合绝缘子的运行状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号