首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft copolymerization of methyl‐methacrylate onto viscose fibers was studied under photoactive conditions with visible light using Ce4+/Ti3+ combination as redox initiator in a limited aqueous medium. Polymerization conducted in the presence of light at 30 ± 1°C produced significant grafting, compared with that conducted in the dark under the same conditions. The % grafting, % total conversion, and % grafting efficiency were studied by varying time, monomer concentration, initiator concentration, and pH of the medium. The mechanism of polymerization and graft copolymer formation have been discussed. Characterization of the grafted fibers was done by Fourier transform infrared spectroscopy and scanning electron microscopy. The effect of % grafting on thermal properties was studied by thermogravimetric analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 135–140, 1999  相似文献   

2.
The feasibility of a cellulose thiocarbonate–azobisisobutyronitrile (AIBN) initiation system to induce graft copolymerization of methyl methacrylate (MMA) and other acrylic monomers onto cotton fabric was investigated. Other acrylic monomers were acrylic acid, acrylonitrile, and methyl acrylate. The initiation system under investigation was highly activated in the presence of a metal‐ion reductant or a metal‐ion oxidant in the polymerization medium. A number of variables in the grafting reaction were studied, including AIBN concentration, pH of the polymerization medium, nature of substrate, monomer concentration, duration and temperature of polymerization, and composition of the solvent/water polymerization medium. The solvents used were methanol, isopropanol, 1,4‐dioxane, cyclohexane, benzene, dimethyl formamide, and dimethyl sulfoxide. There were optimal concentrations of AIBN (5 mmol/L), MMA (8%), Fe2+ (0.1 mmol/L), Mn2+ (8 mmol/L), and Fe3+ (2 mmol/L). A polymerization medium of pH 2 and temperature of 70°C constituted the optimal conditions for grafting. The methanol/water mixture constituted the most favorable reaction medium for grafting MMA onto cotton fabric by using the Fe2+–cellulose thiocarbonate–AIBN redox system. MMA was superior to other monomers for grafting. The unmodified cotton cellulose showed very little tendency to be grafted with MMA compared with the chemically modified cellulosic substrate. A tentative mechanism for the grafting reaction was proposed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1261–1274, 2004  相似文献   

3.
Using a radiation peroxide grafting technique, a ultrahigh molecular weight polyethylene (UHMWPE) stored at room temperature for 10 days after irradiation in air was graft copolymerized with methyl methacrylate (MMA) in the presence of metallic salt and acid. The MMA‐grafted UHMWPE samples were analyzed by measuring Fourier transform infrared spectroscopy in attenuated total reflectance (FTIR–ATR) and by electron spectroscopy for chemical analysis (ESCA). The 1,1‐diphenyl‐2‐picrylhydrzyl (DPPH) technique was utilized to evaluate the concentration of peroxide formed in the peroxidized UHMWPE samples by counting the quantity of DPPH consumed from the reaction of peroxide radicals with DPPH. It was shown that the inclusion of an FeSO4 ·7H2O and sulfuric acid in MMA grafting solutions was extremely beneficial and led to a most unusual synergistic effect in the radiation‐peroxidized grafting. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 659–666, 1999  相似文献   

4.
Isotactic polypropylene fiber (IPP) was graft‐copolymerized using 2‐vinyl pyridine (2‐VP) and styrene (sty) as the monomers by the mutual irradiation method in air. The percentage of grafting was determined as a function of various reaction parameters and it was found that the maximum grafting of 2‐VP (114%) and sty (76%) was obtained at an optimum dose of 1.08 × 104 and 0.64 × 104 Gy using 1.8 × 10−2 mol of 2‐VP and 4.3 × 10−2 mol of sty, respectively. The graft copolymers were characterized by differential scanning calorimetric analysis and isolation of the grafted chains from the grafted iPP samples. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2959–2969, 1999  相似文献   

5.
Ultrasonic irradiation largely accelerated ceric salt initiated grafting of glycidyl methacrylate (GMA) on regenerated cellulose film (cellophane thickness = 20 μm) at 60°C in air. The grafting under ultrasonic irradiation was characterized by a higher percent of grafting and graft efficiency and a lower density of GMA‐grafted chains in the surface layer of the grafted films compared to the unirradiated system, which was obtained by attenuated total reflectance IR measurements. The grafted films were subjected to amination with ethylenediamine (En) at 70°C for 3 h in N,N‐dimethylformamide. The amount of epoxy groups in the grafted films, which participated in the reaction with En, reached about 50–60 mol % and was slightly lower for the grafted film prepared in the irradiated system than that prepared in the unirradiated one. Adsorption of cupric ions with the aminated samples was performed at pH 5.0 using Clark–Lubs buffer solution and cupric chloride. The adsorption was extremely retarded for the aminated sample prepared using the unirradiated sample compared to that prepared using the irradiated one. The retarded adsorption phenomenon is discussed in terms of a larger formation of crosslinked structures on the surface layer of the former sample during the amination. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2462–2469, 1999  相似文献   

6.
1,2‐Propanediol–cellulose–acrylamide graft copolymers (PCACs) were developed for enhanced oil recovery. They were prepared with acrylamide and 1,2‐propanediol (PDO)–cellulose, which was formed through the addition of glycols to cellulose by the Shotten–Baumann reaction between 3‐chloro‐1,2‐propanediol and cellulose. The graft copolymerization was initiated with a redox system between Ce4+ and glycols in cellulose. The infrared spectrum of PDO–cellulose had some characteristic absorption bands around 2960 (νC? H) and 1050 cm?1 (νC? O) that also appeared for the PDO group and pyranose ring of cellulose, respectively. The rate of Ce4+ consumption by PDO–cellulose was investigated through the calculation of the overall kinetic constant from the slopes of ln(D ? DR) versus time (where D is the absorbance and DR is the absorbance of the original polysaccharide solution) The results showed that PDO–cellulose had high reactivity and that there were two mechanisms of oxidation by Ce4+ with PDO–cellulose. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3022–3029, 2004  相似文献   

7.
Modification of poly(tetrafluoroethylene‐co‐ethylene), Tefzel (ETFE), film has been carried out by grafting methylmethacrylate (MMA) by radiation method including preirradiation and double‐irradiation methods. Percentage of grafting has been determined as a function of the (i) total dose, (ii) monomer concentration, (iii) amount of liquor ratio, (iv) reaction time, and (v) temperature.The effect of different alcohols such as methanol, ethanol, 2‐propanol, n‐butanol, n‐pentanol, and 2‐ethoxy ethanol on percentage of grafting of MMA was also studied. The graft copolymers were characterized by IR spectroscopy and thermogravimetric analysis (TGA). Methylmethacrylate produces higher percentage of grafting by preirradiaton method than double‐irradiation method. MMA‐grafted ETFE films (Sirr), i.e., prepared by preirradiation involving single irradiation show better thermal stability than MMA‐grafted ETFE films (Dirr), i.e., prepared by double irradiation and unmodified ETFE film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Methyl methacrylate (MMA) was directly grafted on natural rubber (NR) or sulfur prevulcanized (SP) NR surface. The rubber sheet was primarily treated with argon plasma, followed by exposure to air for generating active functional groups. After immersing in a mixture of 30% hydrogen peroxide and MMA in ethanol and water (1 : 1), the MMA grafting took place after UV‐irradiation for 30–120 min. Results from the contact angle measurement and attenuated total reflection–Fourier transform infrared (ATR‐FTIR) spectroscopy showed that the highest amount of MMA grafting was achieved when using 13 wt % of MMA and UV irradiation time of 60 min. The tensile strength and percentage elongation at break of the modified SPNR sheet, having similar MMA grafting to that of NR, were in acceptable range as indicated in the standard glove's test (ASTM D3577). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2270–2276, 2007  相似文献   

9.
Poly(vinylbenzyltrimethylammonium chloride)‐graft‐cotton cellulose, an anion‐exchange matrix, was synthesized by a mutual radiation‐induced grafting technique with a 60Co γ‐radiation source. The grafted matrix was characterized by grafting yield estimation, elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The grafting yield decreased with the increase in the dose rate. However, the grafting yield and nitrogen content of grafted samples increased almost linearly with an increase in the total irradiation dose. To evaluate the performance of the grafted anion‐exchange matrix, the protein adsorption and elution behavior were investigated in a continuous column process under various experimental conditions, with bovine serum albumin used as a model protein. The binding and elution behavior of the anion‐exchange matrix depended on different experimental parameters, such as the grafting yield, ionic strength, pH of the medium, and amount of protein loaded. From a breakthrough curve, the equilibrium binding capacity and elution percentage of the grafted anion‐exchange matrix were estimated to be 40 mg/g and 94%, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5512–5521, 2006  相似文献   

10.
Styrene (Sty), methyl methacrylate (MMA), methacrylamide (MAm) and acrylomorpholine (AcM) were grafted onto powder cellulose by atom‐transfer radical polymerization. Cellulose chloroacetate (Cell‐ClAc), as a macro‐initiator, was first prepared by the reaction of chloroacetyl chloride with primary alcoholic OH groups on powder cellulose. CuBr and 1,2‐dipiperidinoethane were used as a transition‐metal compound and as a ligand, respectively. These reactions were monitored by FT‐IR and weight increase in Cell‐ClAc. In case of styrene, although some weight increase occurred, no evidence of grafting could be observed in the FT‐IR spectrum, while there were strong evidence of grafting with MMA, MAm and AcM. Cell‐graft‐MAm, Cell‐graft‐AcM and Cell‐graft‐MMA showed new carbonyl bands at 1665, 1640 and 1735 cm?1, respectively. Dye‐uptake and dye‐absorption properties of cellulose, for alizarin yellow (basic dye) and bromocresol green (acidic dye), and its moisture‐ and water‐uptake capacities improved with the grafting, but some decrease was observed in thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The epoxy‐group‐containing microspheres from cross‐linked glycidyl methacrylate and methyl methacrylate, poly(GMA–MMA), were prepared by suspension polymerisation. The epoxy groups of the poly(GMA–MMA) microspheres were used for grafting with an anionic polymer polyethylenimine (PEI) to prepare non‐specific affinity adsorbents (poly(GMA–MMA)–PEI) for bilirubin removal. The specificity of the poly(GMA–MMA)–PEI adsorbent to bilirubin was further increased by immobilization of human serum albumin (HSA) via adsorption onto PEI‐grafted poly(GMA–MMA) adsorbent. Various amounts of HSA were immobilized on the poly(GMA–MMA)–PEI adsorbent by changing the medium pH and initial HSA concentration. The maximum HSA content was obtained at 68.3 mg g?1 microspheres. The effects of pH, ionic strength, temperature and initial bilirubin concentration on the adsorption capacity of both adsorbents were investigated in a batch system. Separation of bilirubin from human serum was also investigated in a continuous‐flow system. The bilirubin adsorption on the poly(GMA–MMA)–PEI and poly(GMA–MMA)–PEI–HSA was not well described by the Langmuir model, but obeyed the Freundlich isotherm model. The poly(GMA–MMA)–PEI affinity microspheres are stable when subjected to sanitization with sodium hydroxide after repeated adsorption–desorption cycles. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The graft copolymerization of methyl methacrylate (MMA) onto high α‐cellulose was carried out homogeneously in an N,N‐dimethyl acetamide/lithium chloride solvent system by using benzoyl peroxide as radical initiator. The rate of grafting was evaluated as a function of concentrations of initiator and monomer, reaction time, and temperature. The grafted products were characterized with the help of infrared spectroscopy, whereas the thermal decomposition of optimum PMMA‐grafted high α‐cellulose was studied using TGA, DTG, and DTA techniques at two heating rates, 10 and 20°C/min, in nitrogen atmosphere in the range of room temperature to 650°C. Three major decomposition steps were identified and the relative thermal stabilities of the PMMA‐grafted high α‐cellulose products were assessed. The kinetic parameters for the three decomposition steps were estimated with the help of two well‐known methods. The thermal stability of the grafted products decreased with the increase of graft yield (GY). Crystallinity or peak intensity of wide‐angle X‐ray diffraction patterns decreased with the increase of GY. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3471–3478, 2004  相似文献   

13.
The effect of monomer concentration, exposure time, irradiation temperature, and weaving direction on the kinetics of grafting acrylic acid (AA), acrylonitrile (AN), and their mixture onto wool fabric has been studied at the dose rate of 1.38 Gy/s. The degree of grafting is found to depend on the methanol‐to‐water solvent ratio and fabric‐to‐liquor ratio. The grafting rate and rate constant are dependent on irradiation temperature, type of grafted monomer, and weaving direction. The grafting rates increase with the increase in irradiation temperature (276–308 K). The calculated activation energy is nearly the same (16.4–17.2 kJ mol?1) and the preexponential rate constant is dependent on the type of grafted monomer. The grafting of AA, AN, and their mixture are confirmed from the dyeing affinity of grafted fabrics towards Sandocryl Blue (SB), a basic dye. The formation of wool grafts and structural changes resulting from grafting were verified by using FTIR spectrometry and X‐ray diffraction analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4328–4340, 2006  相似文献   

14.
Acrylic acid (AA) was grafted onto the powdered isotactic polypropylene (i‐PP) with the electron‐beam‐induced preirradiation method (Chen, D.‐T.; Shi, N.; Xu, D.‐F. J Appl Polym Sci 1999, 73, 1357–1362). Some rare earth ions, including Sm3+, Nd3+, Eu3+, Gd3+, and Er3+, were adsorbed onto the grafting product PP‐g‐AA. The properties of Sm3+ adsorbed were investigated in detail. These properties include the influences of the adsorption time, acidity, ion concentration of the solution, grafting yield of AA onto i‐PP, and temperature on the quantity and efficiency of the ion adsorption. Some kinetic and thermodynamic equilibrium constants of the adsorption were obtained in the experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1549–1553, 2000  相似文献   

15.
The γ‐radiation‐induced grafting of 1,2,2,6,6‐pentamethyl‐4‐piperidinyl methacrylate (PMPM) onto polypropylene (PP) was investigated with a simultaneous irradiation technique. The effects of the solvent, dose, monomer concentration, and photoinitiator on the grafting were investigated. The grafting was easier in a benzene solution than in chloroform and acetone solutions. The grafting percentage first increased almost linearly with the irradiation dose until 20 kGy and then increased slowly or remained constant. The grafting percentage increased with the monomer concentration until 1.1 mol/L. The grafting percentage was higher when the proper amount of benzophenone was added. The grafted samples were characterized with Fourier transform infrared spectroscopy and thermogravimetric analysis. Carbonyl groups were found on grafted PP samples, and the carbonyl index increased with the grafting percentage. Thermogravimetric analyses proved the existence of grafted materials on PP, and grafted PMPM thermally decomposed at a lower temperature than PP. The radiation resistance of PP with grafted PMPM was better than that of pristine PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2157–2164, 2005  相似文献   

16.
The grafting of methacrylic acid (MAA) and other vinyl monomers onto cotton cellulose in fabric form was investigated in an aqueous medium with a potassium peroxydiphosphate–metal ion–cellulose thiocarbonate redox initiation system. The graft copolymerization reaction was influenced by peroxydiphosphate (PP) concentration, the pH of the reaction medium, monomer concentration, the duration and temperature of polymerization, the nature of vinyl monomers, and the nature and concentration of metallic ions (activators). On the basis of a detailed investigation of these factors, the optimal conditions for the grafting of MAA onto cotton fabric with the said redox system were as follows: [Fe2+] = 0.1 mmol/L, [PP] = 2 mmol/L, [MAA] = 4%, pH‐2, grafting time = 2 h, grafting temperature = 70°C, and material/liquor ratio = 1 : 50. Under these optimal conditions, the graft yields of different monomers were in the following sequence: MAA ? acrylonitrile > acrylic acid > methyl acrylate > methyl methacrylate. The unmodified cellulosic fabric (the control) had no ability to be grafted with MAA with the PP–Fe2+ redox system. The percentage of grafting onto the thiocarbonated cellulosic fabric was more greatly enhanced in the presence of iron salts than in their absence. This held true when the lowest concentrations of these salts were used separately. A suitable mechanism for the grafting processes is suggested, in accordance with the experimental results. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1879–1889, 2003  相似文献   

17.
The graft copolymerization of acrylamide (AAm) monomer onto polyethylene‐coated polypropylene (PE‐co‐PP) nonwoven fabric was carried out by the mutual irradiation method. The general peculiarities of the grafting have been studied by gravimetric, scanning electron microscope (SEM), mechanical properties, and Fourier transform infrared (FTIR) methods. The influence of absorbed dose, dose rate, as well as the monomer concentration on the degree of grafting has been determined. Metal ions uptake of Cu2+, Co2+, Ni2+ by the grafted fabrics was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3240–3245, 2006  相似文献   

18.
Graft copolymerization of methyl acrylate (MA) and acrylonitrile (AN) onto acacia cellulose was carried out using free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. The optimum grafting yield was determined by the certain amount of acacia cellulose (AGU), mineral acid (H2SO4), CAN, MA, and AN at 0.062, 0.120, 0.016, 0.397, and 0.550 mol L?1, respectively. The poly(methyl acrylate‐co‐acrylonitrile)‐grafted acacia cellulose was obtained at 55°C after 2‐h stirring, and purified acrylic polymer‐grafted cellulose was characterized by FTIR and TG analysis. Therein, the ester and nitrile functional groups of the grafted copolymers were reacted with hydroxylamine solution for conversion into the hydroxamic acid and amidoxime ligands. The chelating behavior of the prepared ligands toward some metal ions was investigated using batch technique. The metal ions sorption capacities of the ligands were pH dependent, and the sorption capacity toward the metal ions was in the following order: Zn2+ > Fe3+ > Cr3+ > Cu2+ > Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   

20.
To develop cost effective and eco friendly polymeric materials for enrichment and separation technologies, 1‐vinyl‐2‐pyrrolidone (N‐VP) was graft copolymerized onto cellulose, extracted from pine needles. Optimum conditions have been evaluated for the grafting of N‐VP onto cellulose and at these conditions it was also grafted onto cellulose phosphate, hydroxypropyl cellulose, cyanoethyl cellulose, and deoxyhydrazino cellulose. At the optimum grafting conditions for N‐VP, it was also cografted with maleic anhydride. Kinetics of radiochemical graft copolymerization has been studied and evaluation of the polymerization and grafting parameters as percent grafting, percent grafting efficiency, rate of polymerization, homopolymerization, and graft copolymerization have been evaluated. Graft copolymers have been characterized by elemental analysis, FTIR, and swelling studies. An attempt has been made to study sorption of some metal ions such as Fe2+ and Cu2+ and iodine on select graft copolymers to investigate selectivity in metal ion sorption and iodine sorption as a function of structural aspects of the functionalized graft copolymers to find their end uses in separation and enrichment technologies. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 373–382, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号