首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tensile properties of three types of injection molded glass bead (GB) filled polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) ternary composites have been determined at room temperature by using an Instron materials testing machine. The effects of the filler surface treatment, the glass bead (GBI) pretreated with a silane coupling agent and the EPDM (EPDM-MA) modified with a maleic anhydride, and the filler content on the tensile mechanical properties of the ternary PP composites have been investigated. The Young's modulus (Ec) increases while the yield stress (σyc) and tensile fracture strength (σbc) of the composites decrease with increasing the volume fraction of glass beads (ϕg) when the volume fraction of EPDM is constant (ϕe = 10%). The (Ec) values of PP/EPDM/GBI and ϵbc for PP/EPDM-MA/GB2 (no surface pretreated) systems are the highest at the same ϕg. The tensile fracture energy (Ebc) and tensile fracture strain (ϵbc) of PP/EPDM/GBI and PP/EPDM/GB2 systems appear to peak at ϕg = 25%. However, the Ebc and ϵbc of PP/EPDM-MA/GB2 system show little changes with increasing ϕg. The fracture surfaces of ternary composites have been examined in a scanning electron microscope. The correlation between the tensile properties and morphologies of these materials have been discussed.  相似文献   

2.
The tensile properties of polypropylene (PP) filled with two A‐glass beads with the same size, PP/3000 (glass bead surface pretreated with a silane coupling agent) and PP/3000U (no surface pretreatment), have been measured by using an Instron materials testing machine at room temperature, to identify the effects of the filler surface pretreatment and its content on the tensile properties of these composites. The results show that the Young's modulus Ec of the composites increases non‐linearly with increasing volume fraction of glass beads ϕf, while the tensile yield strength σyc and tensile stress at break σbc of the composites decrease with an increase of ϕf, in the ϕf range 0–30%. Furthermore, the values of Ec and σbc of the PP/3000 system are somewhat higher than those of the PP/3000U system under the same test conditions, but this is in contrast to the tensile strain at break εbc and tensile fracture energy Ebc, especially at higher ϕf values. Good agreement is shown between the measured tensile strength and the predicted value by using an equation proposed in previous work. In addition, εbc and Ebc reach maximum values at ϕf = 25% for both systems. This indicates that there is a brittle–ductile transition for the composites in tension. © 2000 Society of Chemical Industry  相似文献   

3.
To identify effects of glass bead (GB) content on the dynamic mechanical properties of filled low‐density‐polyethylene (LDPE) composites, the storage modulus, loss modulus, glass transition temperature, and mechanical damping of these composites were measured using a Du Pont dynamical mechanical analysis instrument in temperature range from ?150 to 100°C. It was found that the storage modulus increased nonlinearly with an increase of the GB volume fraction. On the basis of Eshelby's method and Mori's work, an equation describing the relationship between the relative storage modulus (ER) and filler volume fraction for polymeric composites was proposed, and the ER of LDPE/GB composites were estimated by means of this equation at temperatures of ?25, 0, and 25°C, and the calculations were compared with the experimental data, good agreement was showed between the predictions and the measured data. Furthermore, this equation was verified by the experimental from Al(OH)3 filled EPDM composites at glassy state reported in a reference. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The effects of glass bead filler content and surface treatment of the glass with a silane coupling agent on the room temperature impact fracture behavior of polypropylene (PP)/ethylene‐propylene‐diene monomer copolymer (EPDM)/glass bead(GB) ternary composites were determined. The volume fraction of EPDM was kept constant at 10%. The impact fracture energy and impact strength of the composites increased with increasing volume fraction of glass beads (?g). Surface pretreatment of the glass beads had an insignificant effect on the impact behavior. For a fixed filler content, the best impact strength was achieved when untreated glass beads and a maleic anhydride modified EPDM were used. The impact strength exhibited a maximum value at ?g=15%. Morphology/impact property relationships and an explanation of the toughening mechanisms were developed by comparing the impact properties with scanning electron micrographs of fracture surfaces.  相似文献   

5.
The effects of the filler content and size on the mechanical properties such as tensile modulus, Ec, yield strength, σyc, and impact strength, SIC, of glass bead–filled polypropylene (PP) composites have been investigated employing an Instron materials tester and a Ceast impact tester at room temperature. With increasing concentration of glass beads, Ec and SIC increase, but σyc decreases non–linearly, within a filler volume fraction range of 0%−20%; under the same test conditions, the values of EC and σyc for PP with bigger beads are somewhat lower than those of PP with smaller ones; the maximum values of SIC for the composites are about 1.4 times as high as the unfilled PP; the interface between the matrix and the beads is a weak bond. The results indicate that the stiffness and the toughness of the PP composites are effectively improved by addition of glass beads.  相似文献   

6.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

7.
The dynamic moduli of isotactic polypropylene (PP) filled with ultrafine SiO2 and micron sized glass particles are measured in the temperature range 30–130°C at frequency 10 Hz. The storage moduli of PP composites, E′c, increase with filler content and decreasing filler size in the whole range of temperature. The loss moduli of PP composites, E″c, increase with filler content and decreasing filler size above 40°C. The intensity of the broad despersion which appears at ca. 60°C increases with filler content and decreasing filler size. By assuming that the energy is not dissipated in the effective volume, namely, filler volume plus that of immobilized interfacial region, the effective volume fraction is evaluated from the relative loss modulus, E″cE″0 at 60°C. The effective volume fraction increases with filler content and decreasing filler size. The effect of addition of ultrafine particles on the broad dispersion at ca. 60°C resembles the effect of increasing crystallinity of pure PP. It is concluded that the broad dispersion which appeared at ca. 60°C seemed to be assigned to the grain boundary of PP composities or crystalline boundary of pure PP.  相似文献   

8.
Polymer matrix composites based on brominated epoxy as the matrix and aluminum nitride (AlN) particles as the filler were prepared. The influences of the size, content, and size distribution of AlN on the thermomechanical properties, including the glass‐transition temperature (Tg), coefficient of thermal expansion (CTE), dynamic storage modulus (E′), dynamic loss modulus (E″), and loss factor (tan δ), of the composites were investigated by thermomechanical analysis and dynamic mechanical analysis. There was a total change trend for Tg; that is, Tg of the composites containing nano‐aluminum nitride (nano‐AlN; 50 nm) was lower than that of the micro‐aluminum nitride (micro‐AlN; 2.3 μm) filled composites, especially at high nano‐AlN contents. The Tg depression of the composites containing nano‐AlN was related to the aggregation of nano‐AlN and voids in the composites. On the other hand, the crosslink density of the epoxy matrix decreased for nano‐AlN‐filled composites, which also resulted in a Tg depression. The results also show that E′ and E″ increased, whereas tan δ and CTE of the composites decreased, with increasing the AlN content or increasing nano‐AlN fraction at the same AlN content. These results indicate that increasing the interfacial areas between AlN and the epoxy matrix effectively enhanced the dynamic modulus and decreased CTE. In addition, at a fixed AlN content of 10 wt %, a low E′ of pre‐Tg (before Tg temperature) and high Tg were observed at the smaller weight ratio of nano‐AlN when combinations of nano‐AlN plus micro‐AlN were used as the filler. This may have been related to the best packing efficiency at that weight ratio when the bimodal filler was used. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The mechanical and thermal properties of glass bead–filled nylon‐6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass‐transition temperature (Tg) of the blend, indicating that there existed strong interaction between glass beads and the nylon‐6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon‐6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon‐6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon‐6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content. Finally, TGA and DSC measurements indicated that the thermal stability of the blend was obviously improved by incorporation of glass beads, whereas the melting behavior of the nylon‐6 remained relatively unchanged with increasing glass bead content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1885–1890, 2004  相似文献   

11.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

12.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004  相似文献   

13.
The differential scanning calorimetry glass transition (DSC Tg), measured by ASTM test method E-1356, and the dynamic mechanical analysis glass transition (DMA Tg), measured using a new definition of the DMA Tg, generally agree within ±4°C for a wide variety of commercially available polymers. The DMA Tg is defined as the average of E′ and tan δ peak temperatures measured at a 1 rad/s oscillation frequency. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 191–195, 1997  相似文献   

14.
Commercially available organosilane (3‐glycidoxypropyltrimethoxysilane (GPTMS)) coupling agent was used to treat talc in order to improve the affinity relative between the filler and the polymer in composites as well as filler and polymer in the thermoplastic polyurethane/polypropylene (TPU/PP) blends (talc content was 5 wt%). The talc particles were first modified with GPTMS and then introduced into TPU, PP as well as TPU/PP blends with different weight ratios of polymers using blending method and subsequently injection molded in a hydraulic press. The aim was to report the effect of silane coupling agent on the thermal and morphological properties of talc filled composites and blends. The results showed that the thermal properties of the TPU, PP composites and TPU/PP blends were improved with the addition of silane treated talc (higher melting (Tm), crystallization (Tc) temperatures and degree of crystallinity (χc)). The glass transition temperature (Tg) obtained by dynamic mechanical analysis (DMA) of the TPU soft segments in TPU/PP blends increased with the addition of untreated and silane treated talc due to lower mobility of the soft segments in TPU and better miscibility of TPU and PP. TPU/PP blends with the silane treated talc show better thermal stability than the TPU/PP blends with untreated talc. POLYM. ENG. SCI., 55:1920–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Molecular motion in cured epoxy resin filled with mica flakes was investigated by dynamic mechanical and broad-line nuclear magnetic resonance measurements. Temperature dependences of dynamic modulus and tanδ were determined at 10 Hz for samples containing various amounts of filler. A primary dispersion temperature, T, corresponding to the glass transition, shifts to higher temperature with increasing filler volume fraction Vf. The magnitudes of the slope parameters Hr (representing storage modulus E′ data below Tg) decreased with increasing Vf, but Hg (representing E′ data below Tg) remained nearly constant over the whole loading range studied here. NMR line shapes were observed over the temperature range from room temperature to about 200°C for unfilled and filled samples. Each sample showed a distorted line shape in the transition region where major narrowing occurs. The distorted line shape was decomposed into both broad and narrow components by Gaussian analysis. The temperature range where both components can be obtained becomes broader with increasing filler content. The possibility is set forth that the filler immobilizes the chain segments and causes a different distribution of local mobility around the junction point.  相似文献   

16.
Soybean oil monoglycerides (SOMG), obtained by the glycerolysis of soybean oil, were reacted with maleic anhydride to produce SOMG maleate half esters. The copolymers of the SOMG maleates with styrene produced rigid thermosetting polymers. The dynamic mechanical analysis (DMA) of this polymer showed a glass‐transition temperature (Tg) around 133°C and a storage modulus (E′) value around 0.94 GPa at 35°C. The tensile tests performed on this polymer showed a tensile strength of 29.36 MPa and a tensile modulus of 0.84 GPa. Mixtures of SOMG with neopentyl glycol (NPG) and SOMG with bisphenol A (BPA) were also maleinized under the same reaction conditions and the resulting maleates were then copolymerized with styrene. The resulting polymers were analyzed for their mechanical properties. The Tg of the copolymers of the SOMG/NPG maleates with styrene was 145°C and the E′ value at 35°C was 2 GPa. The tensile strength of this polymer as calculated from the stress–strain data was 15.65 MPa and the tensile modulus was 1.49 GPa. The Tg of the copolymers of SOMG/BPA maleates, on the other hand, was found to be around 131°C and the E′ value was 1.34 GPa at 35°C. The changes observed in the mechanical properties of the resulting polymers with the introduction of NPG maleates and BPA maleates to the SOMG maleates can be explained by the structural changes on the polymer backbone. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 972–980, 2002  相似文献   

17.
The effects of filler content and its surface treatment on the melt flow properties of A‐glass bead‐filled poly(propylene) (PP) composites have been investigated using a capillary rheometer at a wide apparent shear rate scope of 150 to 7 200 s–1 and a temperature range of 160 to 200°C. It was found that the melt shear flow obeyed roughly the power law. The melt shear viscosity (ηw) of the treated glass bead‐filled system with a silane coupling agent was somewhat higher than that of the raw glass bead‐filled system when both the systems were subjected to the same test conditions. The increase of the resistance to flow and flow satiability for the former system can be attributed to the improvement of the compatibility and interfacial adhesion between the filler and matrix as well as the dispersion of the filler in the matrix due to the surface treatment of the glass beads. The dependence of ηw on temperatures can be expressed with an Arrhenius relationship. The temperature sensitivity of ηw for the composite melts is greater than that of the unfilled PP. Furthermore, ηw increases obviously with the volume fraction (ϕf) of the fillers at lower shear rates, while the dependence of ηw on ϕf decreases with the increase of shear rates. This is attributable to the increase of the ability of relative movement between the filler and matrix melt at high extrusion rates.  相似文献   

18.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Positive temperature coefficient to resistivity characteristics of high density polyethylene (HDPE)/silver (Ag)‐coated glass bead (45 wt%) composites, without and with nanoclay, has been investigated with reference to HDPE/carbon black (CB) (10 wt%) composites. Plot of resistivity versus temperature of HDPE/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈128°C, close to the melting temperature (Tm) of HDPE. However, for HDPE/Ag coated glass bead (45 wt%) composites, the PTC trip temperature (≈88°C) appeared well below the Tm of HDPE. Addition of 1 phr clay in the composites resulted in an increase in PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites, whereas no significant effect of clay on PTC trip temperature was evident in HDPE/CB/clay composites. We proposed that the PTC trip temperature in HDPE/Ag‐coated glass bead composites was governed by the difference in coefficient of thermal expansion of HDPE and Ag‐coated glass beads. The room temperature resistivity and PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites were found to be very stable on thermal cycling. Dynamic mechanical analyzer results showed higher storage modulus of HDPE/Ag‐coated glass bead (45 wt%) composites compared with the HDPE/CB (10 wt%) composites. Thermal stability of HDPE/Ag‐coated glass bead (45 wt%) composites was also improved compared with that of HDPE/CB (10 wt%) composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Tensile properties of a poly(2-hydroxyethyl methacrylate) (PHEMA) network filled with various amounts of glass beads, in the dry and the equilibrium water-swollen states, have been studied below and above Tg. The temperature ranged from 5° C to 170° C and the volume fraction of the filler was up to 50 percent. In the glassy region it has been found that the temperature at which the transition from brittle to ductiel behavior occurs is increased by the presence of the filler. In the brittle zone the strength of the composites is decreased by the presence of the filler and can be predicted by using a finite element method; in the ductile zone, however, the strength of the composites reaches that of the unfilled polymer. In the rubbery region failure envelopes have been obtained for both dry and swollen PHEMA/glass bead composites. Using a double shift procedure all the data have been superimposed to obtain universal failure envelopes for the two different states. The dependence of the shift factors on filler content is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号