首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both the linear plasmids, pDHL1 (8·4 kb) and pDHL2 (9·2 kb), of Debaryomyces hansenii TK require the presence of a third linear plasmid pDHL3 (15·0 kb) in the same host cell for their replication. A 3·5 kb Bam HI-PstI fragment of pDHL1 strongly hybridized by Southern analysis to the 3·5 kb NcoI-AccI fragment of pDHL2, suggesting the importance of this conserved region in the replication of the two smaller pDHL plasmids. The 4·2 kb pDHL1 fragment containing the above hybridized region was cloned and sequenced. The results showed that the cloned pDHL1 fragment encodes a protein of 1000 amino acid residues, having a strong similarity to the DNA polymerase coded for by ORF1 of the killer plasmid pGKL1 from Kluyveromyces lactis. The catalytic and proof-reading exonuclease domains as well as terminal protein motif were well conserved as in DNA polymerases of pGKL1 and other yeast linear plasmids. Analysis of the cloned fragment further showed that pDHL1 encodes a protein partly similar to the α subunit of the K. lactis killer toxin, although killer activity was not known in the DHL system. Analysis of the 5′ non-coding region of the two above pDHL1-ORFs reveal the presence of the upstream conserved sequence similar to that found upstream of pGKL1-ORFs. The possible hairpin loop structure was also found just in front of the ATG start codon of the pDHL1-ORFs like pGKL1-ORFs. Thus the cytoplasmic pDHL plasmids were suggested to possess a gene expression system comparable to that of K. lactis plasmids. © John Wiley & Sons, Ltd.  相似文献   

3.
We describe a protein expression system in the methylotrophic yeast, Pichia methanolica. Methods for transformation and genetic manipulation of the organism were developed using an ade2 strain and the wild-type ADE2 gene. A vacuolar protease-deficient strain was constructed. Two genes encoding alcohol oxidases were found, yet a single isoform of alcohol oxidase was produced during methanol-fed fermentations. The promoter from this gene was used to drive expression. An integrating plasmid for the cytoplasmic expression of the 65 kDa isoform of human glutamate decarboxylase (human GAD65) was assembled. A strain harboring eight copies of this plasmid expressed enzymatically active human GAD65 at levels approaching 0·5 g/l. Identical amounts were made in Pichia pastoris. The recombinant GAD65 was purified to greater than 90% purity. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ion. There are seven PP2C‐like genes in Candida albicans. In this study, we demonstrate that CaPtc2p is a PP2C phosphatase. Surprisingly, in addition to the cytoplasmic localization, CaPtc2p is partially associated with mitochondria in yeast‐form and filamentous cells of C. albicans. Expression of CaPTC2 is developmentally regulated during the serum‐induced filamentation. Deletion of CaPTC2 renders C. albicans cells sensitive to SDS and azole antifungals, as well as the DNA methylation agent methylmethane sulphonate and the DNA synthesis inhibitor hydroxyurea. Therefore, CaPtc2p might fulfil multiple functions, including the regulation of mitochondrial physiology and checkpoint recovery from DNA damage in C. albicans cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
2 μm plasmids from an ale yeast, a lager yeast and a strain of Saccharomyces diastaticus have been characterised by restriction analysis. Plasmids were similar to each other and conformed to a pattern which has been reported for well-characterised genetic stocks. The structure of 2 μm DNA, therefore, has been conserved in diverse strains of Saccharomyces. Preparative procedures used here are likely to be applicable to the detection and characterisation of plasmid DNA from a range of yeast genera. The apparent yield of 2 μm was increased when strains were grown at elevated temperature.  相似文献   

7.
Kluyveromyces marxianus DMKU3‐1042 is a thermotolerant yeast strain suitable for high‐temperature ethanol fermentation and genetic engineering with linear DNA. We have developed a highly efficient random gene integration method with a frequency that exceeds 2.5 × 106 transformants/µg linear DNA, a figure comparable to what is observed with autonomously replicating plasmid transformation in Saccharomyces cerevisiae. To establish the mechanism of random integration in DMKU3‐1042, we identified and deleted the K. marxianus KU70 gene, which is known to be involved in the non‐homologous end‐joining (NHEJ) pathway. In yeast lacking KU70, high‐frequency non‐homologous gene integration was abolished and the Kmku70 mutants showed 82–95% homologous gene targeting efficiencies using homologous sequences of 40–1000 bp. These results indicate that the highly efficient NHEJ pathway can be utilized with random gene disruption techniques such as transposon mutagenesis and plasmid‐free gene manipulations in K. marxianus. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Industrial yeast strains carry one of two homeologous 2μm plasmids designated as type-1 or type-2. The 2μm plasmid, Scp1, found in common laboratory strains of Saccharomyces cerevisiae is considered a type-2 plasmid, since the ori, STB, RAF and REP1 loci and intergenic sequences of the right-unique region of Scp1 are homologous to the corresponding loci in industrial strain type-2 plasmids. However, within both its 599 bp inverted repeats Scp1 has 142-bp sequences homologous to the bakers' yeast type-1 plasmid. DNA sequence analyses and oligonucleotide hybridizations indicate that the 142-bp insertion in Scp1 was probably due to homeologous recombination between type-1 and type-2 plasmids. These results suggest that some of the plasmid and chromosomal sequence polymorphisms seen in laboratory yeast strains result from homeologous recombination in their ancestral breeding stock.  相似文献   

9.
Recombinant DNAs are traditionally constructed using Escherichia coli plasmids. In the yeast Saccharomyces cerevisiae, chromosomal gene targeting is a common technique, implying that the yeast homologous recombination system could be applied for recombinant DNA construction. In an attempt to use a S. cerevisiae chromosome for recombinant DNA construction, we selected the single ura3Δ0 locus as a gene targeting site. By selecting this single locus, repeated recombination using the surrounding URA3 sequences can be performed. The recombination system described here has several advantages over the conventional plasmid system, as it provides a method to confirm the selection of correct recombinants because transformation of the same locus replaces the pre‐existing selection marker, resulting in the loss of the marker in successful recombinations. In addition, the constructed strains can serve as both PCR templates and hosts for preparing subsequent recombinant strains. Using this method, several yeast strains that contained selection markers, promoters, terminators and target genes at the ura3Δ0 locus were successfully generated. The system described here can potentially be applied for the construction of any recombinant DNA without the requirement for manipulations in E. coli. Interestingly, we unexpectedly found that several G/C‐rich sequences used for fusion PCR lowered gene expression when located adjacent to the start codon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Novel vectors that use the Pichia pastoris INO1 gene as a selectable marker and exploit the natural inositol auxotrophy of the fission yeast are described. These plasmids also contained other features desirable in a plasmid cloning vector. These plasmids were evaluated in other species of Schizosaccharomyces and found to replicate autonomously in another variety of S. pombe, S. pombe var. malidevorans. These plasmids can be used for transformation of any wild-type S. pombe strain without the need for selection by induced auxotrophic mutations, or by selection by drug resistance markers, and should greatly assist genetic and molecular manipulations in these yeasts.  相似文献   

11.
A system is described for the selection of DNA sequences showing promoter activity in the yeast Saccharomyces cerevisiae using a heterologous reporter enzyme which is efficiently secreted by the yeast host. A multicopy shuttle plasmid of the YEp-type was constructed so as to carry multiple unique cloning sites at the 5′ end of the Aspergillus awamori glucoamylase cDNA. Glucoamylase can only be expressed upon insertion at one of these unique cloning sites of a DNA fragment from any source, provided it is endowed with promoter function in S. cerevisiae. As the glucoamylase signal-peptide is functional in S. cerevisiae, the enzyme is efficiently secreted by the yeast transformants. This phenotype can be very easily detected on plate assays and accurately quantified by spectrophotometric analysis of the culture supernatant. Since S. cerevisiae naturally lacks amylolytic activity, any wild-type strain can be used as a host in this system. To evaluate the system, a DNA pool of random fusions was created by ligating sau 3A digested S. cerevisiae genomic DNA to the BglII-linearized vector. The resulting hybrid plasmids were transformed into S. cerevisiae and several transformants secreting glucoamylase to varying degrees were obtained.  相似文献   

12.
Transformation of the respiratory-defective mutant (E264/U2) of Saccharomyces cerevisiae with a yeast genomic library yielded two different plasmids capable of restoring the ability of the mutant to grow on non-fermentable substrates. One of the plasmids (pG52/T3) contained SDH1 coding for the flavoprotein subunit of mitochondrial succinate dehydrogenase. The absence of detectable succinate dehydrogenase activity in mitochondria of E264/U2 and the lack of complementation of the mutant by an sdh11null strain indicated a mutation in SDH1. The second plasmid (pG52/T8) had an insert with reading frame (YJL045w) of yeast chromosome X coding for a homologue of SDH1. Subclones containing the SDH1 homologue (SDH1b), restored respiration in E264/U2 indicating that the protein encoded by this gene is functional. The expression of the two genes was compared by assaying the β-galactosidase activities of yeast transformed with plasmids containing fusions of lacZ to the upstream regions of SDH1 and SDH1b. The 100–500 times lower activity measured in transformants harbouring the SDH1b-lacZ fusion indicates that the isoenzyme encoded by SDH1b is unlikely to play an important role in mitochondrial respiration. This is also supported by the absence of any obvious phenotype in cells with a disrupted copy of SDH1b. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this study was to identify and characterise the predominant yeasts in Champús, a traditional Colombian cereal-based beverage with a low alcoholic content.Samples of Champús from 20 production sites in the Cauca Valley region were analysed. A total of 235 yeast isolates were identified by conventional microbiological analyses and by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of ITS1-5.8S rDNA-ITS2. The dominant species were: Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia fermentans, Pichia kluyveri var. kluyveri, Zygosaccharomyces fermentati, Torulospora delbruekii, Galactomyces geotrichum and Hanseniaspora spp. Model Champús systems were inoculated with single strains of some isolated sporogenus species and the aromatic profiles were analysed by SPME. Analysis of data showed that Champús strains produced high amounts of esters. The aromatic compounds produced by Saccharomyces and non-Saccharomyces yeasts from Champús can exert a relevant influence on the sensory characteristics of the fermented beverage. The Champús strains could thus represent an important source for new yeast biotypes with potential industrial applications.  相似文献   

14.
Centrifugal elutriation discriminates cells according to their sedimentation coefficients, generating homogeneous samples well suited for genomic comparative approaches. It can, for instance, isolate G1 daughter cells from a Saccharomyces cerevisiae unsynchronized population, alleviating ageing and cell‐cycle biases when conducting genome‐wide/single‐cell studies. The present report describes a straightforward and robust procedure to determine whether a cell population of virtually any yeast species can be efficiently elutriated, while offering solutions to optimize success. This approach was used to characterize elutriation parameters and S‐phase progression of four yeast species (S. cerevisiae, Candida glabrata, Lachancea kluyveri and Pichia sorbitophila) and could theoretically be applied to any culture of single, individual cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Cell‐free extract prepared from methanol‐grown cells of the methylotrophic yeast Pichia methanolica showed nine multiple alcohol oxidase (AOD) bands on active staining in native polyacrylamide gel electrophoresis. Their molecular basis was investigated and two AOD‐encoding genes, MOD1 and MOD2, were cloned from P. methanolica genome. When the two genes were expressed in a heterologous host, an alcohol oxidase‐depleted strain of Candida boidinii(aod1Δ strain), both MOD1 and MOD2 partially complemented growth defect of the host strain on methanol. While expression of either MOD1 or MOD2 in C. boidinii aod1Δ strain gave a single AOD band corresponding to the band with the largest and smallest mobility among the nine AOD bands, respectively, co‐expression of MOD1 and MOD2 resulted in multiple band formation. Mixed oligomerization of Mod1p and Mod2p in vitro also gave nine multiple bands. From these results, we concluded that the nine multiple forms of AOD observed on native–PAGE represent two homo‐octamers and seven hetero‐octamers of Mod1p and Mod2p. Using this zymogram analysis, we also found that Mod1p was preferably produced at low methanol concentrations in the media, while Mod2p was produced at higher methanol concentrations. This shows distinct regulatory features of the two AOD‐encoding genes in this methylotrophic yeast. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, the yeast episomal plasmid (YEp), containing a partial sequence from a natural 2-μm plasmid, has been frequently used to induce high levels of gene expression. In this study, we used Japanese sake yeast natural cir0 strain as a host for constructing an entire 2-μm plasmid with an expression construct using the three-fragment gap-repair method without Escherichia coli manipulation. The 2-μm plasmid contains two long inverted repeats, which is problematic for the amplification by polymerase chain reaction. Therefore, we amplified it by dividing into two fragments, each containing a single repeat together with an overlapping sequence for homologous recombination. TDH3 promoter-driven yEmRFP (TDH3p-yEmRFP) and the URA3 were used as a reporter gene and a selection marker, respectively, and inserted at the 3′ end of the RAF1 gene on the 2-μm plasmid. The three fragments were combined and used for the transformation of sake yeast cir0 ura3- strain. The resulting transformant colonies showed a red or purple coloration, which was significantly stronger than that of the cells transformed with YEp-TDH3p-yEmRFP. The 2-μm transformants were cultured in YPD medium and observed by fluorescence microscopy. Almost all cells showed strong fluorescence, suggesting that the plasmid was preserved during nonselective culture conditions. The constructed plasmid maintained a high copy state similar to that of the natural 2-μm plasmid, and the red fluorescent protein expression was 54 fold compared with the chromosomal integrant. This vector is named YHp, the Yeast Hyper expression plasmid.  相似文献   

17.
Two fragments of DNA containing the Saccharomyces cerevisiae STA2 glucoamylase gene, with differing lengths of 5î non-coding DNA, were separately subcloned into a yeast centromeric plasmid. Of these two subclones, only the shorter one (containing 127 base-pairs of 5î non-coding DNA) was able to confer glucoamylase production on a standard laboratory strain of S. cerevisiae. The longer subclone (containing 465 bp of 5î non-coding DNA) did, however, confer glucoamylase production on a strain of S. cerevisiae lacking a functional STA10 gene (which encodes a repressor of STA2 gene expression). All-yeast plasmids lacking bacterial DNA were constructed from the two STA2 subclones for the transformation of a lager brewing yeast. Only the shorter STA2 subclone conferred glucoamylase activity on this yeast. The level of enzyme activity was comparable to that produced by the same yeast strain containing STA2 expressed from the PGK1 (that is, PGK1) promoter.  相似文献   

18.
Plasmid pME559, carrying all five yeast TRP genes, was constructed. This plasmid is a yeast/Escherichia coli shuttle vector based on pBR322 and 2 μm-DNA sequences derived from plasmid pJDB207. We studied in yeast (i) the stability of the plasmid under selective and non-selective conditions, (ii) expression of all five TRP genes and (iii) tryptophan accumulation in yeast transformants. These studies were conducted in comparison with an earlier construction, pME554, which differs from plasmid pME559 in the expression of the TRP1 gene and which carries the TRP2 wild type instead of the TRP2fbr mutant allele. For stable maintenance of the plasmids in yeast a selection was necessary. Plasmid pME559 displayed normal expression of all TRP genes, and enzyme levels on average 23-fold higher than in the wild type strain were found. In comparison, the maximal tryptophan flux observed in such a plasmid-carrying strain was about ten-fold higher than the maximal flux capacity in the wild type strain.  相似文献   

19.
Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin‐, G418‐, nourseothricin‐ and blasticidin‐resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post‐transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic‐resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S‐adenosyl‐l ‐methionine at levels approximately twice those of the parent strain. The new hygromycin‐resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号