首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
This paper studies discretized errors, and their estimation in conjunction with quadrilateral finite element meshes which are generated by the intelligent mesh generator XFORMQ.1 The exact energy error is used to evaluate the distortion effect of the quadrilateral mesh. The Zienkiewicz–Zhu2 error estimate and actaptive procedure are applied to the short cantilever and the square plate problems using the quadrilateral mesh generator XFORMQ. It is shown that the multistage quadrilateral element refinement produces results superior to the triangular element refinement in the test cases.  相似文献   

2.
The hybrid‐mixed assumed natural strain four‐node quadrilateral element using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the plate body N not equally spaced SaS parallel to the middle surface in order to introduce the displacements of these surfaces as basic plate variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the thickness direction permits the presentation of the plate formulation in a very compact form. The SaS are located at Chebyshev polynomial nodes that allow one to minimize uniformly the error due to the Lagrange interpolation. To avoid shear locking and have no spurious zero energy modes, the assumed natural strain concept is employed. The developed hybrid‐mixed four‐node quadrilateral plate element passes patch tests and exhibits a superior performance in the case of coarse distorted mesh configurations. It can be useful for the 3D stress analysis of thin and thick plates because the SaS formulation gives the possibility to obtain solutions with a prescribed accuracy, which asymptotically approach the 3D exact solutions of elasticity as the number of SaS tends to infinity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a finite element solver for the simulation of steady non‐Newtonian flow problems, using a regularized Bingham model, with adaptive mesh refinement capabilities. The solver is based on a stabilized formulation derived from the variational multiscale framework. This choice allows the introduction of an a posteriori error indicator based on the small scale part of the solution, which is used to drive a mesh refinement procedure based on element subdivision. This approach applied to the solution of a series of benchmark examples, which allow us to validate the formulation and assess its capabilities to model 2D and 3D non‐Newtonian flows.  相似文献   

4.
This paper presents a novel method for error estimation and h-version adaptive mesh refinement for potential problems which are solved by the boundary element method (BEM). Special sensitivities, denoted as mesh sensitivities, are used to evaluate a posteriori error indicators for each element, and a global error estimator. A mesh sensitivity is the sensitivity of a physical quantity at a boundary node with respect to perturbation of the mesh. The element error indicators for all the elements can be evaluated from these mesh sensitivities. Mesh refinement can then be performed by using these element error indicators as guides.The method presented here is suitable for both potential and elastostatics problems, and can be applied for adaptive mesh refinement with either linear or quadratic boundary elements. For potential problems, the physical quantities are potential and/or flux; for elastostatics problems, the physical quantities are tractions/displacements (or tangential derivatives of displacements). In this paper, the focus is on potential problems with linear elements, and the proposed method is validated with two illustrative examples. However, it is easy to extend these ideas to elastostatics problems and to quadratic elements.The computing for this research has been supported by the Cornell National Supercomputer Facility.  相似文献   

5.
A family of p-method plane elasticity elements is derived based on the hybrid Trefftz formulation.1 Exact solutions of the Lamé-Navier equations are used for the intra-element displacement field together with an independent displacement frame function field along the element boundary. The final unknowns are the parameters of the frame function field consisting of the usual degrees of freedom at corner nodes and an optional number of hierarchic degrees of freedom associated with the mid-side nodes. Since the element matrices do not involve integration over the element area, the elements have a polygonal contour with an optional number of curved sides. The quadrilateral element has the same external appearance as the conventional p-method plane elasticity element.2,3 But unlike in the conventional p-method approach, suitable special-purpose Trefftz functions are generally used to handle the singularity and/or stress concentration problems rather than a local mesh refinement. The practical efficiency of the new elements is assessed through a series of examples.  相似文献   

6.
We present a new approach to quadrilateral mesh refinement, which reduces the problem to its structural core. The resulting problem formulation belongs to a class of discrete problems, network‐flow problems, which has been thoroughly investigated and is well understood. The network‐flow model is flexible enough to allow the simultaneous incorporation of various aspects such as the control of angles and aspect ratios, local density control, and templates (meshing primitives) for the internal refinement of mesh elements. We show that many different variants of the general quadrilateral mesh‐refinement problem are covered. In particular, we present a novel strategy, which provably finds a conformal refinement unless there is none. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Finite element formulations for second‐order elliptic problems, including the classic H1‐conforming Galerkin method, dual mixed methods, a discontinuous Galerkin method, and two primal hybrid methods, are implemented and numerically compared on accuracy and computational performance. Excepting the discontinuous Galerkin formulation, all the other formulations allow static condensation at the element level, aiming at reducing the size of the global system of equations. For a three‐dimensional test problem with smooth solution, the simulations are performed with h‐refinement, for hexahedral and tetrahedral meshes, and uniform polynomial degree distribution up to four. For a singular two‐dimensional problem, the results are for approximation spaces based on given sets of hp‐refined quadrilateral and triangular meshes adapted to an internal layer. The different formulations are compared in terms of L2‐convergence rates of the approximation errors for the solution and its gradient, number of degrees of freedom, both with and without static condensation. Some insights into the required computational effort for each simulation are also given.  相似文献   

8.
In the present study, a hexahedral mesh generator was developed for remeshing in three‐dimensional metal forming simulations. It is based on the master grid approach and octree‐based refinement scheme to generate uniformly sized or locally refined hexahedral mesh system. In particular, for refined hexahedral mesh generation, the modified Laplacian mesh smoothing scheme mentioned in the two‐dimensional study (Part I) was used to improve the mesh quality while also minimizing the loss of element size conditions. In order to investigate the applicability and effectiveness of the developed hexahedral mesh generator, several three‐dimensional metal forming simulations were carried out using uniformly sized hexahedral mesh systems. Also, a comparative study of indentation analyses was conducted to check the computational efficiency of locally refined hexahedral mesh systems. In particular, for specification of refinement conditions, distributions of effective strain‐rate gradient and posteriori error values based on a Z2 error estimator were used. From this study, it is construed that the developed hexahedral mesh generator can be effectively used for three‐dimensional metal forming simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
An r-h adaptive scheme has been proposed and formulated for analysis of bimaterial interface problems using adaptive finite element method. It involves a combination of the configurational force based r-adaption with weighted laplacian smoothing and mesh enrichment by h-refinement. The Configurational driving force is evaluated by considering the weak form of the material force balance for bimaterial inerface problems. These forces assembled at nodes act as an indicator for r-adaption. A weighted laplacian smoothing is performed for smoothing the mesh. The h-adaptive strategy is based on a modifed weighted energy norm of error evaluated using supercovergent estimators. The proposed method applies specific non sliding interface strain compatibility requirements across inter material boundaries consistent with physical principles to obtain modified error estimators. The best sequence of combining r- and h-adaption has been evolved from numerical study. The study confirms that the proposed combined r-h adaption is more efficient than a purely h-adaptive approach and more flexible than a purely r-adaptive approach with better convergence characteristics and helps in obtaining optimal finite element meshes for a specified accuracy.  相似文献   

10.
This paper presents a strategy to parameterize contact surfaces of arbitrary mesh topology in 3D with at least C1‐continuity for both quadrilateral and triangular meshes. In the regular mesh domain, four quadrilaterals or six triangles meet in one node, even C2‐continuity is attained. Therefore, we use subdivision surfaces, for which non‐physical pressure jumps are avoided for contact interactions. They are usually present when the contact kinematics is based on facet elements discretizing the interacting bodies. The properties of subdivision surfaces give rise to basically four different implementation strategies. Each strategy has specific features and requires more or less efforts for an implementation in a finite element program. One strategy is superior with respect to the others in the sense that it does not use nodal degrees of freedom of the finite element mesh at the contact surface. Instead, it directly uses the degrees of freedom of the smooth surface. Thereby, remarkably, it does not require an interpolation. We show how the proposed method can be used to parameterize adaptively refined meshes with hanging nodes. This is essential when dealing with finite element models whose geometry is generated by means of subdivision techniques. Three numerical 3D problems demonstrate the improved accuracy, robustness and performance of the proposed method over facet‐based contact surfaces. In particular, the third problem, adopted from biomechanics, shows the advantages when designing complex contact surfaces by means of subdivision techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A variational h‐adaptive finite element formulation is proposed. The distinguishing feature of this method is that mesh refinement and coarsening are governed by the same minimization principle characterizing the underlying physical problem. Hence, no error estimates are invoked at any stage of the adaption procedure. As a consequence, linearity of the problem and a corresponding Hilbert‐space functional framework are not required and the proposed formulation can be applied to highly non‐linear phenomena. The basic strategy is to refine (respectively, unrefine) the spatial discretization locally if such refinement (respectively, unrefinement) results in a sufficiently large reduction (respectively, sufficiently small increase) in the energy. This strategy leads to an adaption algorithm having O(N) complexity. Local refinement is effected by edge‐bisection and local unrefinement by the deletion of terminal vertices. Dissipation is accounted for within a time‐discretized variational framework resulting in an incremental potential energy. In addition, the entire hierarchy of successive refinements is stored and the internal state of parent elements is updated so that no mesh‐transfer operator is required upon unrefinement. The versatility and robustness of the resulting variational adaptive finite element formulation is illustrated by means of selected numerical examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
An efficient, four‐node quadrilateral shell element is formulated using a linear, first‐order shear deformation theory. The bending part of the formulation is constructed from a cross‐diagonal assembly of four three‐node anisoparametric triangular plate elements, referred to as MIN3. Closed‐form constraint equations, which arise from the Kirchhoff constraints in the thin‐plate limit, are derived and used to eliminate the degrees‐of‐freedom associated with the ‘internal’ node of the cross‐diagonal assembly. The membrane displacement field employs an Allman‐type, drilling degrees‐of‐freedom formulation. The result is a displacement‐based, fully integrated, four‐node quadrilateral element, MIN4T, possessing six degrees‐of‐freedom at each node. Results for a set of validation plate problems demonstrate that the four‐node MIN4T has similar robustness and accuracy characteristics as the original cross‐diagonal assembly of MIN3 elements involving five nodes. The element performs well in both moderately thick and thin regimes, and it is free of shear locking. Shell validation results demonstrate superior performance of MIN4T over MIN3, possibly as a result of its higher‐order interpolation of the membrane displacements. It is also noted that the bending formulation of MIN4T is kinematically compatible with the existing anisoparametric elements of the same order of approximation, which include a two‐node Timoshenko beam element and a three‐node plate element, MIN3. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
An s‐adaptive finite element procedure is developed for the transient analysis of 2‐D solid mechanics problems with material non‐linearity due to progressive damage. The resulting adaptive method simultaneously estimates and controls both the spatial error and temporal error within user‐specified tolerances. The spatial error is quantified by the Zienkiewicz–Zhu error estimator and computed via superconvergent patch recovery, while the estimation of temporal error is based on the assumption of a linearly varying third‐order time derivatives of the displacement field in conjunction with direct numerical time integration. The distinguishing characteristic of the s‐adaptive procedure is the use of finite element mesh superposition (s‐refinement) to provide spatial adaptivity. Mesh superposition proves to be particularly advantageous in computationally demanding non‐linear transient problems since it is faster, simpler and more efficient than traditional h‐refinement schemes. Numerical examples are provided to demonstrate the performance characteristics of the s‐adaptive method for quasi‐static and transient problems with material non‐linearity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a new automatic adaptive refinement procedure for thin‐walled structures using 3D solid elements is suggested. This procedure employs a specially designed superconvergent patch recovery (SPR) procedure for stress recovery, the Zienkiewicz and Zhu (Z–Z) error estimator for the a posteriori error estimation, a new refinement strategy for new element size prediction and a special mesh generator for adaptive mesh generation. The proposed procedure is different from other schemes in such a way that the problem domain is separated into two distinct parts: the shell part and the junction part. For stress recovery and error estimation in the shell part, special nodal coordinate systems are used and the stress field is separated into two components. For the refinement strategy, different procedures are employed for the estimation of new element sizes in the shell and the junction parts. Numerical examples are given to validate the effectiveness of the suggested procedure. It is found that by using the suggested refinement procedure, when comparing with uniform refinement, higher convergence rates were achieved and more accurate final solutions were obtained by using fewer degrees of freedoms and less amount of computational time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This work presents two new error estimation approaches for the BEM applied to 2D potential problems. The first approach involves a local error estimator based on a gradient recovery procedure in which the error function is generated from differences between smoothed and non‐smoothed rates of change of boundary variables in the local tangential direction. The second approach involves the external problem formulation and gives both local and global measures of error, depending on a choice of the external evaluation point. These approaches are post‐processing procedures. Both estimators show consistency with mesh refinement and give similar qualitative results. The error estimator using the gradient recovery approach is more general, as this formulation does not rely on an ‘optimal’ choice of an external parameter. This work presents also the use of a local error estimator in an adaptive mesh refinement procedure. This r‐refinement approach is based on the minimization of the standard deviation of the local error estimate. A non‐linear programming procedure using a feasible‐point method is employed using Lagrange multipliers and a set of active constraints. The optimization procedure produces finer meshes close to a singularity and results that are consistent with the problem physics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A verification methodology for adaptive processes is devised. The mathematical claims made during the process are identified and measures are presented in order to verify that the mathematical equations are solved correctly. The analysis is based on a formal definition of the optimality of the adaptive process in the case of the control of the L‐norm of the interpolation error. The process requires a reconstruction that is verified using a proper norm. The process also depends on mesh adaptation toolkits in order to generate adapted meshes. In this case, the non‐conformity measure is used to evaluate how well the adapted meshes conform to the size specification map at each iteration. Finally, the adaptive process should converge toward an optimal mesh. The optimality of the mesh is measured using the standard deviation of the element‐wise value of the L‐norm of the interpolation error. The results compare the optimality of an anisotropic process to an isotropic process and to uniform refinement on highly anisotropic 2D and 3D test cases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A variational formulation and C1 finite element scheme with adaptive mesh refinement and coarsening are developed for phase‐separation processes described by the Cahn–Hilliard diffuse interface model of transport in a mixture or alloy. The adaptive scheme is guided by a Laplacian jump indicator based on the corresponding term arising from the weak formulation of the fourth‐order non‐linear problem, and is implemented in a parallel solution framework. It is then applied to resolve complex evolving interfacial solution behavior for 2D and 3D simulations of the classic spinodal decomposition problem from a random initial mixture and to other phase‐transformation applications of interest. Simulation results and adaptive performance are discussed. The scheme permits efficient, robust multiscale resolution and interface characterization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
An adaptive finite element procedure is developed for modelling transient phenomena in elastic solids, including both wave propagation and structural dynamics. Although both temporal and spatial adaptivity are addressed, the novel feature of the formulation is the use of mesh superposition to produce spatial refinement (referred to as s‐adaptivity) in transient problems. Spatial error estimation is based on superconvergent patch recovery of higher‐order accurate stresses and is used to guide mesh adaptivity, while the temporal error estimation is based on the assumption of linearly varying third‐order time derivatives of the displacement field and is used to adjust the time step size for the HHT‐α variant of the Newmark direct numerical integration method. Spatial adaptivity of the mesh is performed using a hierarchical h‐refinement scheme that is efficiently implemented using a structured version of finite element mesh superposition. This particular spatial adaptivity scheme is extremely fast and consequently makes it feasible to repeatedly update both the mesh and the time increment as required in an adaptive transient analysis. This work represents the initial effort in applying this type of spatial adaptivity to transient problems. Three example problems are given to demonstrate the performance characteristics of the s‐adaptive procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with the effective numerical implementation of the adaptive dual boundary‐element method (DBEM), for two‐dimensional potential problems. Two boundary integral equations, which are the potential and the flux equations, are applied for collocation along regular and degenerate boundaries, leading always to a single‐region analysis. Taking advantage on the use of non‐conforming parametric boundary‐elements, the method introduces a simple error estimator, based on the discontinuity of the solution across the boundaries between adjacent elements and implements the p, h and mixed versions of the adaptive mesh refinement. Examples of several geometries, which include degenerate boundaries, are analyzed with this new formulation to solve regular and singular problems. The accuracy and efficiency of the implementation described herein make this a reliable formulation of the adaptive DBEM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号