首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miscibility and hydrogen bonding interaction in the poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(4‐vinyl phenol) [P(3HB‐co‐3HH)/PVPh] binary blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicate that P(3HB‐co‐3HH) with 20 mol % 3HH unit content is fully miscible with PVPh, and FTIR studies reveal the existence of hydrogen bonding interaction between the carbonyl groups of P(3HB‐co‐3HH) and the hydroxyl groups of PVPh. The effect of blending of PVPh on the mechanical properties of P(3HB‐co‐3HH) were studied by tensile testing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

3.
BACKGROUND: Biopolymers produced by microbes are in demand as their biodegradable and biocompatible properties make them suitable for disposable products and for potential use as biomaterials for medical applications. The effective microbial production of copolyesters of 3‐hydroxybutyrate (3HB) and 4‐hydroxybutyrate(4HB) with high molar fractions of 4HB unit by a wild‐type Wautersia eutropha H16 was investigated in culture media containing 4‐hydroxybutyric acid (4HBA) and different carbon substrates in the presence of various α‐amino acids. RESULTS: The addition of carbon sources such as glucose, fructose and acetic acid to the culture medium containing 4HBA in the presence of α‐amino acids resulted in the production of random poly(3HB‐co‐4HB) with compositions of up to 77 mol% 4HB unit, but the yields of copolyesters with 60–77 mol% 4HB units were less than 15 wt% of dried cell weights. In contrast, when carbon sources such as propionic acid and butyric acid were used as the co‐substrates of 4HBA in the presence of α‐amino acids, poly(3HB‐co‐4HB) copolyesters with compositions of 72–86 mol% 4HB were produced at maximally 47.2 wt% of dried cell weight (11.3 g L?1) and the molar conversion yield of 4HBA to 4HB fraction in copolyesters was as high as 31.4 mol%. Further, poly(3HB‐co‐4HB) copolyesters with compositions of 93–96 mol% 4HB were isolated at up to 35.2 wt% of dried cell weights by fractionation of the above copolymers with chloroform/n‐hexane. CONCLUSION: The productivity of copolyesters with over 80 mol% 4HB fractions was as high as 0.146 g L?1 h?1 (3.51 g L?1 for 24 h) by flask batch cultivation. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
The miscibility and crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/poly(vinyl acetate) (PVAc) blends have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PVAc blends were miscible in the melt over the whole compositions. Thus the blend exhibited a single glass transition temperature (Tg), which increased with increasing PVAc composition. The spherulitic morphologies of P(HB‐co‐HV)/PVAc blends indicated that the PVAc was predominantly segregated into P(HB‐co‐HV) interlamellar or interfibrillar regions during P(HB‐co‐HV) crystallization because of the volume‐filled spherulites. As to the crystallization kinetics study, it was found that the overall crystallization and crystal growth rates decreased with the addition of PVAc. The kinetics retardation was primarily attributed to the reduction of chain mobility and dilution of P(HB‐co‐HV) upon mixing with higher Tg PVAc. The overall crystallization rate was predominantly governed by the spherulitic growth rate and promoted by the samples treated with the quenched state because of the higher nucleation density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 980–988, 2006  相似文献   

5.
Biopolyesters poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) with an 11 mol % 4HB content [P(3HB‐co‐11%‐4HB)] and a 33 mol % 4HB content [P(3HB‐co‐33%‐4HB)] were blended by a solvent‐casting method. The thermal properties were investigated with differential scanning calorimetry. The single glass‐transition temperature of the blends revealed that the two components were miscible when the content of P(3HB‐co‐33%‐4HB) was less than 30% or more than 70 wt %. The blends, however, were immiscible when the P(3HB‐co‐33%‐4HB) content was between 30 and 70%. The miscibility of the blends was also confirmed by scanning electron microscopy morphology observation. In the crystallite structure study, X‐ray diffraction patterns demonstrated that the crystallites of the blends were mainly from poly(3‐hydroxybutyrate) units. With the addition of P(3HB‐co‐33%‐4HB), larger crystallites with lower crystallization degrees were induced. Isothermal crystallization was used to analyze the melting crystallization kinetics. The Avrami exponent was kept around 2; this indicated that the crystallization mode was not affected by the blending. The equilibrium melting temperature decreased from 144 to 140°C for the 80/20 and 70/30 blends P(3HB‐co‐11%‐4HB)/P(3HB‐co‐33%‐4HB). This hinted that the crystallization tendency decreased with a higher P(3HB‐co‐33%‐4HB) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Biodegradable polymer blends based on biosourced polymers, namely polylactide (PLA) and poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)), were prepared by melt compounding. The effects of P(3HB‐co‐4HB) on the miscibility, phase morphology, thermal behavior, mechanical properties, and biodegradability of PLA/P(3HB‐co‐4HB) blends were investigated. The blend was an immiscible system with the P(3HB‐co‐4HB) domains evenly dispersed in the PLA matrix. However, the Tg of P(3HB‐co‐4HB) component in the blends decreased compared with neat P(3HB‐co‐4HB), which might be attributed to that the presence of the phase interface between PLA and P(3HB‐co‐4HB) resulted in enhanced chain mobility near interface. The addition of P(3HB‐co‐4HB) enhanced the cold crystallization of PLA in the blends due to the nucleation enhancement of PLA caused by the enhanced chain mobility near the phase interface between PLA and P(3HB‐co‐4HB) in the immiscible blends. With the increase in P(3HB‐co‐4HB) content, the blends showed decreased tensile strength and modulus; however, the elongation at beak was increased significantly, indicating that the inherent brittlement of PLA was improved by adding P(3HB‐co‐4HB). The interesting aspect was that the biodegradability of PLA is significantly enhanced after blends preparation. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
The miscibility of high molecular weight poly(ethylene oxide) blends with poly(3‐hydroxypropionic acid) and poly(3‐hydroxybutyric acid) (P(3HB)) has been investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and high‐resolution solid state 13C nuclear magnetic resonance (NMR). The DSC thermal behaviour of the blends revealed that the binary blends of poly(ethylene oxide)/poly(3‐hydroxypropionic acid) (OP blends) were miscible over the whole composition range while the miscibility of poly(ethylene oxide)/poly(3‐hydroxybutyric acid) blends (OB blends) was dependent on the blend composition. OB blends were found to be partly miscible at the middle P(3HB) contents (25 %, 50 %) and miscible at other P(3HB) contents (10 %, 75 % and 90 %). Single‐phase behaviour for OP blends and phase separation behaviour for OB blends were observed from DMTA. The results from NMR spectroscopy revealed that the two components in the OP50 blend were intimately mixed on a scale of about 35 nm, while the domain sizes in the OB blend with a P(3HB) content of 50 % were larger than about 32 nm. © 2000 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The aim of this work is to enhance the production of terpolyester poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐3HV‐co‐4HB)) produced by a locally isolated bacterium, Cupriavidus sp. USMAA2‐4. The monomer composition was varied by supplementing different carbon precursors and by manipulating the culture condition through one‐stage cultivation. The effect of C/N ratio and different concentrations of carbon source and precursors were investigated in order to produce higher content of this terpolyester. Although research on this biodegradable polyester is abundant, studies on terpolyester P(3HB‐co‐3HV‐co‐4HB) are still limited. RESULTS: Supplementation of oleic acid in accumulation medium increased the bacterial growth and polyhydroxyalkanoate (PHA) accumulation. It was also shown that medium consisting of assorted carbon precursors at C/N 20 gave relatively high dry cell weight and P(3HB‐co‐3HV‐co‐4HB) content. Various compositions of terpolyester were obtained when the concentration of oleic acid and 4HB precursors were manipulated. The combination of oleic acid with γ‐butyrolactone and 1‐pentanol was found to be the best combination to produce high PHA content (81 wt%). The composition of monomer in P(3HB‐co‐3HV‐co‐4HB) was produced in the range 8–13 mol% for 3HV and 9–24 mol% for 4HB, respectively. CONCLUSIONS: The production of P(3HB‐co‐3HV‐co‐4HB) in shake‐flasks successfully produced 81 wt% of PHA content. This manipulated culture condition can be used at larger scale to provide modeling for the production of terpolyester in a bioreactor. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
This study was designed to determine whether the surface modifications of the various poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] copolymer scaffolds fabricated would enhance mouse fibroblast cells (L929) attachment and proliferation. The P(3HB‐co‐4HB) copolymer with a wide range of 4HB monomer composition (16–91 mol %) was synthesized by a local isolate Cupriavidus sp. USMAA1020 by employing the modified two‐stage cultivation and by varying the concentrations of 4HB precursors, namely γ‐butyrolactone and 1,4‐butanediol. Five different processing techniques were used in fabricating the P(3HB‐co‐4HB) copolymer scaffolds such as solvent casting, salt‐leaching, enzyme degradation, combining salt‐leaching with enzyme degradation, and electrospinning. The increase in 4HB composition lowered melting temperatures (Tm) but increased elongation to break. P(3HB‐co‐91 mol % 4HB) exhibited a melting point of 46°C and elongation to break of 380%. The atomic force analysis showed an increase in the average surface roughness as the 4HB monomer composition increased. The mouse fibroblasts (L929) cell attachment was found to increase with high 4HB monomer composition in copolymer scaffolds. These results illustrate the importance of a detailed characterization of surface architecture of scaffolds to provoke specific cellular responses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
The miscibility, melting and crystallization behaviour of poly[(R)‐3‐hydroxybutyrate], PHB, and oligo[(R,S)‐3‐hydroxybutyrate]‐diol, oligo‐HB, blends have been investigated by differential scanning calorimetry: thermograms of blends containing up to 60 wt% oligo‐HB showed behaviour characteristic of single‐phase amorphous glasses with a composition dependent glass transition, Tg, and a depression in the equilibrium melting temperature of PHB. The negative value of the interaction parameter, determined from the equilibrium melting depression, confirms miscibility between blend components. In parallel studies, glass transition relaxations of different melt‐crystallized polymer blends containing 0–20 wt% oligo‐HB were dielectrically investigated between ?70 °C and 120 °C in the 100 Hz to 50 kHz range. The results revealed the existence of a single α‐relaxation process for blends, indicating the miscibility between amorphous fractions of PHB and oligo‐HB. © 2002 Society of Chemical Industry  相似文献   

12.
Poly(L ‐lactide‐co‐ε‐caprolactone)‐b‐poly(L ‐lactide) [P(LL‐co‐CL)‐b‐PLL] diblock copolyesters were synthesized in a two‐step process with 1‐dodecanol (DDC) and stannous octoate as the initiating system. In the first‐step reaction, a 50:50 mol % amorphous poly(L ‐lactide‐co‐ε‐caprolactone) [P(LL‐co‐CL)] copolyester was synthesized via the bulk copolymerization of L ‐lactide and ε‐caprolactone, which was followed by the polymerization of the PLL crystalline block at the end chain in the second‐step reaction. The yielded copolyesters were characterized with dilute‐solution viscometry, gel permeation chromatography, 1H‐ and 13C‐NMR, and differential scanning calorimetry methods. The molecular weights of the P(LL‐co‐CL) copolyesters from the first‐step reaction were controlled by the DDC concentrations, whereas in the second‐step reaction, the molecular weights of the P(LL‐co‐CL)‐b‐PLL diblock copolyesters depended on the starting P(LL‐co‐CL) copolyester molecular weights and L ‐lactide/prepolymer molar ratios. The starting P(LL‐co‐CL) copolyester molecular weights and PLL block lengths seemed to be the main factors affecting specific thermal properties, including the melting temperature (Tm), heat of melting (ΔHm), crystallizing temperature (Tc), and heat of crystallizing (ΔHc), of the final P(LL‐co‐CL)‐b‐PLL diblock copolyester products. Tm, ΔHm, Tc, and ΔHc increased when the PLL block lengths increased. However, these thermal properties of the diblock copolyesters also decreased when the P(LL‐co‐CL) block lengths increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
The kinetics of crystallization induced by orotic acid (OA) and boron nitride (BN) as nucleating agents were investigated for bacterial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)s (P(HB‐co‐HH)s) containing from 0 to 18% HH monomer units. The nucleation efficiency of these two chemicals was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that both orotic acid and boron nitride are able to nucleate the crystallization of PHB. In the case of P(HB‐co‐HH) copolymers, orotic acid showed an outstanding nucleating effect. The comparison of half‐crystallization times shows that for P(HB‐co‐10% HH), the crystallization initiated by orotic acid is more than three time faster than the one induced by boron nitride (t1/2BN/t1/2OA(60°C) = 3.7 and t1/2BN/t1/2OA(90°C) = 4.5). According to the fact that orotic acid is a biodegradable, biocompatible and a nontoxic chemical, this nucleating agent is a promising solution for PHAs used in medical applications such as implants. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Miscibility and properties of two atactic poly(methyl methacrylate)‐based blends [containing 10 and 20% of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)] have been investigated as a function of thermal treatments. Differential scanning calorimetry and dynamic mechanical thermal analysis of blends quenched in liquid nitrogen or ice/water, after annealing at T > 190 °C, showed a single glass transition temperature, indicating miscibility of the components for the time‐temperature history. Two glass transition temperatures, equal to those of the pure components, are instead found for blends after annealing at T < 190 °C. Scanning electron microscopy confirmed the homogeneity for the former quenched blends and phase separation for the latter. These results indicate the presence of an upper critical solution temperature (UCST). Tensile experiments, performed on two series of samples annealed at temperatures above and below the UCST, showed that the copolyester induces a decrease of Young's modulus and stresses at yielding and break points, and a marked increase of elongation at break. Differences in tensile properties between the two series of annealed blends are accounted for by the physical state of the components at room temperature after annealing above or below the UCST. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Polyhydroxyalkanoate (PHA) copolyesters were synthesized by Cupriavidus necator cells in continuous feeding of cosubstrates. During the PHA accumulation phase, the composition of 3‐hydroxybutyrate (3HB), 3‐hydroxyvalerate (3HV), and 4‐hydroxyvalerate (4HV) of the copolyesters changed with time, resulting in a change in their miscibility. The as‐produced PHA finally became a miscible blend of copolymers with a broad chemical composition distribution. The good miscibility and low crystallinity of the natural P(3HB‐co‐3HV‐co‐4HV) blend lead to a remarkable increase in ductility and elongation at break. It indicates that the material properties of copolyesters can be tailored via feeding control of cosubstrates. It was also found that the fractions of natural PHA blend exhibited distinctive thermal behavior and the overall behavior of the as‐produced PHA blend was primarily dependent on a fraction of high 3HB content. The material properties of a PHA blend are therefore not determined by its overall chemical composition but more likely by the combined effect of individual copolyesters or fractions. Moreover, the degree of X‐ray crystallinity of random P(3HB‐co‐3HV‐co‐4HV) blend declined significantly with the increase of 3HV and 4HV content, in contrast to the high crystallinity of well‐known P(3HB‐co‐3HV) copolyesters. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] fiber and P(3HB‐co‐4HB)/EVA fiber were obtained by single screw extrusion machine. The rheology of P(3HB‐co‐4HB) and P(3HB‐co‐4HB)/EVA blends was characterized by capillary rheometer, and the chemical groups of the blends were characterized with Fourier transform infrared spectroscopy (FT‐IR). The crystallization behavior and thermal, mechanical and elastic properties of the fibers were measured by differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and single fiber strength tester, respectively. Besides, the moisture regain and drying shrinkage rates of the fibers were tested. These results showed that P(3HB‐co‐4HB)/EVA blends have better flowability, crystallinity, and thermal stability than P(3HB‐co‐4HB) fiber. The fracture strength of the P(3HB‐co‐4HB)/EVA fiber decreases with increasing the EVA content, but the elongation at break shows the contrary tendency. The rebound resilience ratio of P(3HB‐co‐4HB)/EVA fiber reaches 100%. Both moisture regain and drying shrinkage increase first and then decrease with increasing the EVA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41206.  相似文献   

18.
The effective microbial production of copolyesters of 3‐hydroxybutyrate (3HB) and 4‐hydroxybutyrate (4HB) with high mole fractions of 4HB units by a wild‐type strain of Ralstonia eutropha H16 was investigated in culture solutions containing 4‐hydroxybutyric acid (4HBA) and various carbon substrates in the presence of a nitrogen source such as ammonium sulfate. The addition of glucose or acetic acid to the culture solution containing 4HBA in the presence of ammonium sulfate resulted in the production of random copolymers of P(3HB‐co‐4HB) with compositions of up to 82 mol% 4HB, but the yield of copolymers was less than 7 wt% of dried cell weights. In contrast, when n‐alkanoic acids such as propionic acid, butyric acid, valeric acid and hexanoic acid, being subject to β‐oxidation metabolism in the cell, were used as the co‐substrates of 4HBA in the presence of ammonium sulfate, a mixture of copolymers with two different 4HB compositions was produced, and copolyesters with compositions of 93–100 mol% 4HB were isolated from chloroform–n‐hexane insoluble fractions in the mixture of copolymers. Especially, when this wild‐type Ralstonia eutropha H16 was cultivated in a medium containing 4HBA (15 g litre−1), propionic acid (5 g litre−1) and ammonium sulfate (5 g litre−1), namely C/N (mol/mol) = 10, the P(4HB) homopolymer was produced at maximally 34 wt% of dry cell weight (7.8 g litre−1), and the conversion yield of 4HBA to P(4HB) homopolymer resulted in values as high as 21 mol%. © 1999 Society of Chemical Industry  相似文献   

19.
Natural amorphous polymer poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3HB4HB) containing 41 mol % of 4HB was blended with poly(3‐hydroxybutyrate) (PHB) with an aim to improve the properties of PHB. The influence of P3HB4HB contents on thermal and mechanical properties of the blends was evaluated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, stress–strain measurement and thermo gravimetric analyzer. Miscibility of PHB/P3HB4HB blends was mainly decided by the contents of P3HB4HB. When P3HB4HB exceeded 50 wt %, the two polymer phases separated and showed immiscibility. The addition of P3HB4HB did not alter the crystallinity of PHB, yet it diluted the PHB crystalline phase as revealed by DSC studies. DSC and FTIR results showed that the overall crystallinity of the blends decreased remarkably with increasing of P3HB4HB contents. Decreased glass transition temperature and crystallinity imparted desired flexibility for the blends. The ductility of the blends increased progressively with increasing of P3HB4HB content. Thus, the PHB mechanical properties can be modulated by changing the blend composition. P3HB4HB did not significantly improve the thermal stability of PHB, yet it is possible to melt process PHB without much molecular weights loss via blending it with suitable amounts of P3HB4HB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/silica nanocomposites were prepared by melt compounding. The effects of silica on the morphology, crystallization, thermal stability, mechanical properties, and biodegradability of P(3HB‐co‐4HB) were investigated. The nanoparticles showed a fine and homogeneous dispersion in the P(3HB‐co‐4HB) matrix for silica contents below 5 wt%, whereas some aggregates were detected with further increasing silica content. The addition of silica enhanced the crystallization of P(3HB‐co‐4HB) in the nanocomposites due to the heterogeneous nucleation effect of silica. However, the crystal structure of P(3HB‐co‐4HB) was not modified in the presence of silica. The thermal stability of P(3HB‐co‐4HB) was enhanced by the incorporation of silica. Silica was an effective reinforcing agent for P(3HB‐co‐4HB), and the modulus and tensile strength of the nanocomposites increased, whereas the elongation at break decreased with increasing silica loading. The exciting aspect of this work was that the rate of enzymatic degradation of P(3HB‐co‐4HB) was enhanced significantly after nanocomposites preparation. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号