首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trefftz boundary element method for domains with slits   总被引:6,自引:0,他引:6  
This paper is concerned with the implementation of the Trefftz boundary element method, for the analysis of two-dimensional potential problems in domains with thin internal or edge cavities. Each cavity is treated as an infinitely thin slit defined in a single region, for which a particular solution of the problem is known. This solution procedure which does not generate new unknowns in the problem, satisfies exactly the specified boundary conditions along the slit boundaries. Furthermore, the strength of the singularity, defined at the tip of each slit, is directly computed by the solver. Several examples are analysed with this procedure for both the collocation and Galerkin techniques of the Trefftz boundary element method. The accuracy and efficiency of the implementations described herein make the Trefftz boundary element method ideal for the study of potential problems with degenerated geometries.  相似文献   

2.
The present text deals with the numerical solution of two‐dimensional high‐frequency acoustic scattering problems using a new high‐order and asymptotic Padé‐type artificial boundary condition. The Padé‐type condition is easy‐to‐implement in a Galerkin least‐squares (iterative) finite element solver for arbitrarily convex‐shaped boundaries. The method accuracy is investigated for different model problems and for the scattering problem by a submarine‐shaped scatterer. As a result, relatively small computational domains, optimized according to the shape of the scatterer, can be considered while yielding accurate computations for high‐frequencies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The present paper is concerned with the formulation of the singularity subtraction technique in the dual boundary element analysis of the mixed-mode deformation of general homogeneous cracked plates.The equations of the dual boundary element method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation is applied on the other, general mixed-mode crack problems can be solved in a single region boundary element formulation, with both crack surfaces discretized with discontinuous quadratic boundary elements.The singularity subtraction technique is a regularization procedure that uses a singular particular solution of the crack problem to introduce the stress intensity factors as additional problem unknowns. The single-region boundary element analysis of a general crack problem restricts the availability of singular particular solutions, valid in the global domain of the problem. A modelling strategy, that considers an automatic partition of the problem domain in near-tip and far-tip field regions, is proposed to overcome this difficulty. After the application of the singularity subtraction technique in the near-tip field regions, regularized locally with the singular term of the Williams' eigenexpansion, continuity is restored with equilibrium and compatibility conditions imposed along the interface boundaries. The accuracy and efficiency of the singularity subtraction technique make this formulation ideal for the study of crack growth problems under mixed-mode conditions.  相似文献   

4.
In this paper, a Galerkin boundary integral equation method for two‐dimensional elastodynamic problems is presented. The formulation makes use of a static fundamental solution to weight the dynamic equilibrium equations. Following the Galerkin approach, the equations are weighted again with the interpolation functions used in the discretization of the unknowns. For the numerical integration, a regularization process is followed to deal with the integrands containing strong singularities. The implementation of the dual reciprocity method to transfer the domain integrals to the boundary is also presented in the context of the Galerkin formulation. Finally, the Hubolt integration scheme was used for the time‐marching process. Several numerical examples are presented to demonstrate the accuracy of the method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Boundary type solution methodologies for linear elliptic boundary value problems (BVPs) are now well established. Unfortunately, this class of problems represents very few realistic practical situations due to the presence of nonlinearities in either boundary conditions or material properties. In this paper, we demonstrate an indirect formulation of the Trefftz method for solution of nonlinear BVPs arising in potential problems. While the concept of Trefftz method itself is fairly established, its application to nonlinear BVPs has been quite limited. Past experience indicates that Trefftz complete functions often give rise to polynomial type of nonlinearities and the resulting equations that govern the unknowns are almost always poorly conditioned, for which numerical solutions are difficult to obtain from standard procedures. For the solution of such nonlinear equations, we adopt a highly robust stabilized continuation method with inherent numerical error attenuation properties. Our numerical examples demonstrate this methodology when applied to 2D heat conduction problems with material and boundary condition nonlinearities, and the results indicate good potential for the use of indirect Trefftz method for nonlinear problems.  相似文献   

6.
In this paper, a solution procedure for plane piezoelectricity is developed by Trefftz boundary‐collocation method. Starting with the general plane piezoelectricity solution derived by Lekhnitskii's formalism, the basic sets of Trefftz functions which satisfy the homogeneous governing equations are derived. Moreover, special sets of Trefftz functions are derived for impermeable elliptical voids, impermeable sharp cracks and permeable sharp cracks with arbitrary orientations with respect to the material poling direction. The functions in the special sets satisfy not only the homogeneous governing equations but also the boundary conditions at the peripheries of the pertinent defects. By adopting Trefftz functions as the trial functions, multi‐domain Trefftz boundary‐collocation method is formulated. Numerical examples are presented to illustrate the efficacy of the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The Galerkin and collocation methods are combined in the implementation of a boundary integral formulation based on the Trefftz method for linear elastostatics. A finite element approach is used in the derivation of the formulation. The domain is subdivided in regions or elements, which need not be bounded, simply connected or convex. The stress field is directly approximated in each element using a complete solution set of the governing Beltrami condition. This stress basis is used to enforce on average, in the Galerkin sense, the compatibility and elasticity conditions. The boundary of each element is, in turn, subdivided into boundary elements whereon the displacements are independently approximated using Dirac functions. This basis is used to enforce by collocation the static admissibility conditions, which reduce to the Neumann conditions as the stress approximation satisfies locally the domain equilibrium condition. The resulting solving system is symmetric and sparse. The coefficients of the structural matrices and vectors are defined either by regular boundary integral expressions or determined by direct collocation of the trial functions.  相似文献   

8.
A three-step solution technique is presented for solving two-dimensional (2D) and three-dimensional (3D) nonhomogeneous material problems using the multi-domain boundary element method. The discretized boundary element formulation expressed in terms of normalized displacements and tractions is written for each sub-domain. The first step is to eliminate internal variables at the individual domain level. The second step is to eliminate boundary unknowns defined over nodes used only by the domain itself. And the third step is to establish the system of equations according to the compatibility of displacements and equilibrium of tractions at common interface nodes. Discontinuous elements are utilized to model the traction discontinuity across corner nodes. The distinct feature of the three-step solver is that only interface displacements are unknowns in the final system of equations and the coefficient matrix is blocked sparse. As a result, large-scale 3D problems can be solved efficiently. Three numerical examples for 2D and 3D problems are given to demonstrate the effectiveness of the presented technique.  相似文献   

9.
A new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A novel substructuring method is developed for the coupling of boundary element and finite element subdomains in order to model three‐dimensional multi‐region elastodynamic problems in the time domain. The proposed procedure is based on the interface stiffness matrix approach for static multi‐region problems using variational principles together with the concept of Duhamel integrals. Unit impulses are applied at the boundary of each region in order to evaluate the impulse response matrices of the Duhamel (convolution) integrals. Although the method is not restricted to a special discretization technique, the regions are discretized using the boundary element method combined with the convolution quadrature method. This results in a time‐domain methodology with the advantages of performing computations in the Laplace domain, which produces very accurate and stable results as verified on test examples. In addition, the assembly of the boundary element regions and the coupling to finite elements are greatly simplified and more efficient. Finally, practical applications in the area of soil–structure interaction and tunneling problems are shown. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A residual finite element formulation is developed in this paper to solve elastodynamic problems in which body wave potentials are primary unknowns. The formulation is based on minimizing the square of the residuals of governing equations as well as all boundary conditions. Since the boundary conditions in terms of wave potentials are neither Dirichlet nor Neumann type it is difficult to construct a functional to satisfy all governing equations and boundary conditions following the variational principle designed for conventional finite element formulation. That is why the least squares technique is sought. All boundary conditions are included in the functional expression so that the satisfaction of any boundary condition does not become a requirement of the trial functions, but they should satisfy some continuity conditions across the interelement boundary to guarantee proper convergence. In this paper it is demonstrated that the technique works well for elastodynamic problems; however, it is equally applicable to any other field problem.  相似文献   

12.
A boundary element formulation, which does not require domain discretization and allows a single region analysis, is presented for steady-state thermoelastic crack problems. The problems are solved by the dual boundary element method which uses displacement and temperature equations on one crack surface and traction and flux equations on the other crack surface. The domain integrals are transformed to boundary integrals using the Galerkin technique. Stress intensity factors are calculated using the path independent -integral. Several numerical problems are solved and the results are compared, where possible, with existing solutions.  相似文献   

13.
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large‐scale wave‐propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with nonreflective boundary treatments to limit the size of the computational domain without losing accuracy or computational efficiency, which remains a challenging task. In this paper, we present a combination of a nodal discontinuous Galerkin method with high‐order absorbing boundary conditions for cuboidal computational domains. Compatibility conditions are derived for high‐order absorbing boundary conditions intersecting at the edges and the corners of a cuboidal domain. We propose a GPU implementation of the computational procedure, which results in a multidimensional solver with equations to be solved on 0D, 1D, 2D, and 3D spatial regions. Numerical results demonstrate both the accuracy and the computational efficiency of our approach.  相似文献   

14.
In this paper, six-node hybrid-Trefftz triangular finite element models which can readily be incorporated into the standard finite element program framework in the form of additional element subroutines are devised via a hybrid variational principle for Helmholtz problem. In these elements, domain and boundary variables are independently assumed. The former is truncated from the Trefftz solution sets and the latter is obtained by the standard polynomial-based nodal interpolation. The equality of the two variables are enforced along the element boundary. Both the plane-wave solutions and Bessel solutions are employed to construct the domain variable. For full rankness of the element matrix, a minimal of six domain modes are required. By using local coordinates and directions, rank sufficient and invariant elements with six plane-wave modes, six Bessel solution modes and seven Bessel solution modes are devised. Numerical studies indicate that the hybrid-Trefftz elements are typically 50% less erroneous than their continuous Galerkin element counterpart.  相似文献   

15.
The simple boundary element method consists of recycling existing codes for homogeneous media to solve problems in non‐homogeneous media while maintaining a purely boundary‐only formulation. Within this scope, this paper presents a ‘simple’ Galerkin boundary element method for multiple cracks in problems governed by potential theory in functionally graded media. Steady‐state heat conduction is investigated for thermal conductivity varying either parabolically, exponentially, or trigonometrically in one or more co‐ordinates. A three‐dimensional implementation which merges the dual boundary integral equation technique with the Galerkin approach is presented. Special emphasis is given to the treatment of crack surfaces and boundary conditions. The test examples simulated with the present method are verified with finite element results using graded finite elements. The numerical examples demonstrate the accuracy and efficiency of the present method especially when multiple interacting cracks are involved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three‐dimensional singular and hyper‐singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. In addition, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user‐defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous‐Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements, boundary locking is avoided and optimal‐order convergence is achieved. This is shown through numerical experiments in reaction–diffusion problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of locally satisfying the domain conditions of the problem. The solid displacement and the outward normal component of the seepage displacement are approximated independently on the boundary of the element. Unbounded domains are modelled using either unbounded elements that locally satisfy the Sommerfeld condition or absorbing boundary elements that enforce that condition in weak form. As the finite element equations are derived from first‐principles, the associated energy statements are recovered and the sufficient conditions for the existence and uniqueness of the solutions are stated. The performance of the element is illustrated with the time domain response of a biphasic unbounded domain to show the quality of the modelling that can be attained for the stress, pressure, displacement and seepage fields using a high‐order, wavelet‐based time integration procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号