首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, a new cubic B‐spline plate element is developed using field consistency principle, for vibration analysis. The formulation includes anisotropy, transverse shear deformation, in‐plane and rotary inertia effects. The element is based on a laminated refined plate theory, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the top and bottom surfaces of the plates. The lack of consistency in the shear strain field interpolations in its constrained physical limits produces poor convergence and results in unacceptable solutions due to locking phenomenon. Hence, numerical experimentation for the evaluation of natural frequencies of plates is carried out to check this deficiency with a series of assumed shear strain functions, redistributed in a field consistent manner. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In the conventional displacement‐based finite element analysis of composite beam–columns that consist of two Euler–Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the transverse and longitudinal displacement fields may cause oscillations in slip field and reduction in optimal convergence rate, known as slip locking. This locking phenomenon is typical of multi‐field problems of this type, and is known to produce erroneous results for the displacement‐based finite element analysis of composite beam–columns based on cubic transverse and linear longitudinal interpolation fields. This paper introduces strategies including the assumed strain method, discrete strain gap method, and kinematic interpolatory technique to alleviate the oscillations in slip and curvature, and improve the convergence performance of the displacement‐based finite element analysis of composite beam–columns. A systematic solution of the differential equations of equilibrium is also provided, and a superconvergent element is developed in this paper. Numerical results presented illustrate the accuracy of the proposed modifications. The solutions based on the superconvergent element provide benchmark results for the performance of these proposed formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A thin, eight‐node, tri‐linear displacement, hexahedral finite element is the starting point for the derivation of a constant membrane stress resultant, constant bending stress resultant shell finite element. The derivation begins by introducing a Taylor series expansion for the stress distribution in the isoparametric co‐ordinates of the element. The effect of the Taylor series expansion for the stress distribution is to explicitly identify those strain modes of the element that are conjugate to the mean or average stress and the linear variation in stress. The constant membrane stress resultants are identified with the mean stress components, and the constant bending stress resultants are identified with the linear variation in stress through the thickness along with in‐plane linear variations of selected components of the transverse shear stress. Further, a plane‐stress constitutive assumption is introduced, and an explicit treatment of the finite element's thickness is introduced. A number of elastic simulations show the useful results that can be obtained (tip‐loaded twisted beam, point‐loaded hemisphere, point‐loaded sphere, tip‐loaded Raasch hook, and a beam bent into a ring). All of the gradient/divergence operators are evaluated in closed form providing unequivocal evaluations of membrane and bending strain rates along with the appropriate divergence calculations involving the membrane stress and bending stress resultants. The fact that a hexahedral shell finite element has two distinct surfaces aids sliding interface algorithms when a shell folds back on itself when subjected to large deformations. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

4.
An improved 4-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger–Reissner variational principle and the shape functions are formulated directly for the 4-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has 9 independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling and linear free vibration problems. The element is validated with standard test cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.  相似文献   

5.
A finite element formulation for refined linear analysis of multilayered shell structures of moderate thickness is presented. An underlying shell model is a direct extension of the first‐order shear‐deformation theory of Reissner–Mindlin type. A refined theory with seven unknown kinematic fields is developed: (i) by introducing an assumption of a zig‐zag (i.e. layer‐wise linear) variation of displacement field through the thickness, and (ii) by assuming an independent transverse shear stress fields in each layer in the framework of Reissner's mixed variational principle. The introduced transverse shear stress unknowns are eliminated on the cross‐section level. At this process, the interlaminar equilibrium conditions (i.e. the interlaminar shear stress continuity conditions) are imposed. As a result, the weak form of constitutive equations (the so‐called weak form of Hooke's law) is obtained for the transverse strains–transverse stress resultants relation. A finite element approximation is based on the four‐noded isoparametric element. To eliminate the shear locking effect, the assumed strain variational concept is used. Performance of the derived finite element is illustrated with some numerical examples. The results are compared with the exact three‐dimensional solutions, as well as with the analytical and numerical solutions obtained by the classical, the first‐order and some representative refined models. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The degenerated approach for shell elements of Ahmad and co‐workers is revisited in this paper. To avoid transverse shear locking effects in four‐node bilinear elements, an alternative formulation based on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the transverse shear terms of the strain field. In the first part of the work the analysis of the null transverse shear strain subspace for the degenerated element and also for the selective reduced integration (SRI) and assumed natural strain (ANS) formulations is carried out. Locking effects are then justified by the inability of the null transverse shear strain subspace, implicitly defined by a given finite element, to properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably simple single‐element test is described where ANS formulation fails to converge to the correct results, being characterized by the same performance as the degenerated shell element. The adequate enhancement of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchhoff hypothesis for low thickness values and leading to a framework for the development of shear‐locking‐free shell elements. Numerical linear elastic tests show improved results obtained with the proposed formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A three-noded curved beam element with transverse shear deformation, based on independent isoparametric quadratic interpolations, is designed from field-consistency principles. It is shown that a quadratic element that is field-inconsistent in membrane strain suffers from ‘membrane locking’—i.e. an error of the second kind propagates indefinitely as the element length to thickness ratio and/or the element length to radius of curvature ratio increase, in nearly inextensional bending. However, field-inconsistency in shear strain does not lead to ‘shear locking’ but degrades its performance to exactly that of a field-consistent linear element. It is also seen that field-inconsistency leads to severe axial force and shear force oscillations. Error estimates for locking are derived, wherever possible, and confirmed by numerical experiments. The field-consistent element offered here is the most efficient quadratic curved beam element possible.  相似文献   

8.
This paper presents an eight‐node nonlinear solid‐shell element for static problems. The main goal of this work is to develop a solid‐shell formulation with improved membrane response compared with the previous solid‐shell element (MOS2013), presented in 1 . Assumed natural strain concept is implemented to account for the transverse shear and thickness strains to circumvent the curvature thickness and transverse shear locking problems. The enhanced assumed strain approach based on the Hu–Washizu variational principle with six enhanced assumed strain degrees of freedom is applied. Five extra degrees of freedom are applied on the in‐plane strains to improve the membrane response and one on the thickness strain to alleviate the volumetric and Poisson's thickness locking problems. The ensuing element performs well in both in‐plane and out‐of‐plane responses, besides the simplicity of implementation. The element formulation yields exact solutions for both the membrane and bending patch tests. The formulation is extended to the geometrically nonlinear regime using the corotational approach, explained in 2 . Numerical results from benchmarks show the robustness of the formulation in geometrically linear and nonlinear problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A new three‐noded C1 beam finite element is derived for the analysis of sandwich beams. The formulation includes transverse shear and warping due to torsion. It also accounts for the interlaminar continuity conditions at the interfaces between the layers, and the boundary conditions at the upper and lower surfaces of the beam. The transverse shear deformation is represented by a cosine function of a higher order. This allows us to avoid using shear correction factors. A warping function obtained from a three‐dimensional elasticity solution is used in the present model. Since the field consistency approach is accounted for interpolating the transverse strain and torsional strain, an exact integration scheme is employed in evaluating the strain energy terms. Performance of the element is tested by comparing the present results with exact three‐dimensional solu‐tions available for laminates under bending, and the elasticity three‐dimensional solution deduced from the de Saint‐Venant solution including both torsion with warping and bending. In addition, three‐dimensional solid finite elements using 27 noded‐brick elements have been used to bring out a reference solution not available for sandwich structures having high shear modular ratio between skins and core. A detailed parametric study is carried out to show the effects of various parameters such as length‐to‐thickness ratio, shear modular ratio, boundary conditions, free (de Saint‐Venant) and constrained torsion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
An efficient two‐node curved axisymmetric shell element is proposed. The element with three degrees of freedom per node accounts for the transverse shear flexibility and rotary inertia. The strain components are defined in a curvilinear co‐ordinate frame. The variation of normal displacement (w) along the meridian is represented by a cubic polynomial. The relevant constitutive relations and the differential equations of equilibrium in the meridional plane of the shell are used to derive the polynomial field for the tangential displacement (u) and section rotation (θ). This results in interdependent polynomials for the field variables w, u and θ, whose coefficients are coupled by generalized degrees of freedom and geometric and material properties of the element. These coupled polynomials lead to consistently vanishing coefficients for the membrane and transverse shear strain fields even in the limit of extreme thinness, without producing any spurious constraints. Thus the element is devoid of membrane and shear locking in thin limit of inextensible and shearless bending, respectively. Full Gaussian integration rules are employed for evaluating stiffness marix, consistent load vector and consistent mass matrix. Numerical results are presented for axisymmetric deep/shallow shells having curved/straight meridional geometries for static and free vibration analyses. The accuracy and convergence characteristics of this C0 element are superior to other elements of the same class. The performance of the element demonstrates its applicability over a wide range of axisymmetric shell configurations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The cell‐based strain smoothing technique is combined with discrete shear gap method using three‐node triangular elements to give a so‐called cell‐based smoothed discrete shear gap method (CS‐DSG3) for static and free vibration analyses of Reissner–Mindlin plates. In the process of formulating the system stiffness matrix of the CS‐DSG3, each triangular element will be divided into three subtriangles, and in each subtriangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on whole the triangular element is used to smooth the strains on these three subtriangles. The numerical examples demonstrated that the CS‐DSG3 is free of shear locking, passes the patch test, and shows four superior properties such as: (1) being a strong competitor to many existing three‐node triangular plate elements in the static analysis; (2) can give high accurate solutions for problems with skew geometries in the static analysis; (3) can give high accurate solutions in free vibration analysis; and (4) can provide accurately the values of high frequencies of plates by using only coarse meshes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Shallowly curved beam elements, including shear deformation and rotary inertia effects, are derived from Hamilton's variational principle. Different degree polynomials, labelled ‘anisoparametric’, are used to interpolate the kinematic variables, instead of uniform interpolations as in the conventional isoparametric procedure. This approach yields a correct representation of the bending strain and, importantly, the membrane and transverse shear strains. Consequently, the severe shortcomings of the exactly integrated isoparametric elements, characterized by excessively stiff solutions in the thin regime (a phenomenon often referred to as membrane and shear locking), are overcome. Uniform (isoparametric-like) nodal patterns are achieved by explicitly enforcing higher-degree penalty modes in the membrane and shear strains. This procedure preserves the compatibility of the kinematic field and the capability of the element to move rigidly without straining. Exact quadratures are used on all element matrices, producing a correct rank stiffness matrix, a consistent load vector and a consistent mass matrix. The elements suffer no limitations over the entire theoretical range of the slenderness ratio. For further enhancement and, particularly, in coarse-mesh situations, an effective relaxation of penalty constraints at the local element level is introduced. This technique ensures a well-conditioned stiffness matrix. Although the element penalty constraints are relaxed, the corresponding global structure constraints are enforced as is required by the analytic theory. Particular attention is given to the simplest element—a two-node, six degree-of-freedom beam in which all strains are constant. Solutions to static and free vibration arch and ring problems are presented, demonstrating the exceptional modelling capabilities of this element.  相似文献   

13.
An improved eight-noded isoparametric quadratic plate bending element based on refined higher-order zigzag theory (RHZT) has been developed in the present study to determine the interlaminar stresses of multilayered composite laminates. The C0 continuous element has been formulated by considering warping function in the displacement field based on the RHZT. Shear locking phenomenon is avoided by considering substitute shear strain field. The continuity of transverse shear stresses cannot be ensured by the proposed zigzag formulation directly, and hence, the continuity conditions of transverse shear stresses have been established by using the three-dimensional (3D) stress equilibrium equations in the present study. The transverse shear stresses are computed in a simplified manner using the differential equations of stress equilibrium. A finite element code is developed by using MATLAB software package. The performance of the present finite element model is validated by comparing the results with 3D elasticity solutions. The superiority of the proposed element in view of computational efficiency, simplicity, and accuracy has been examined by comparing the present solutions with those available in published literature using other elements.  相似文献   

14.
15.
Abstract

The free vibration analysis of orthotropic composite laminates is investigated by using the partial hybrid plate element. The Hellinger‐Reissner principle is modified by adding kinetic energy. The through thickness effect is properly predicted since the transverse shear stress fields are assumed in the hybrid stress version. The natural frequencies are therefore accurately predicted. Apparently, the present study is more accurate than the displacement‐based higher‐order plate element.  相似文献   

16.
17.
In this paper, we investigate the vibration analysis of functionally graded material (FGM) and laminated composite structures, using a refined 8-node shell element that allows for the effects of transverse shear deformation and rotary inertia. The properties of FGM vary continuously through the thickness direction according to the volume fraction of constituents defined by sigmoid function, but in this method, their Poisson’s ratios of the FGM plates and shells are assumed to be constant. The finite element, based on a first-order shear deformation theory, is further improved by the combined use of assumed natural strains and different sets of collocation points for interpolation the different strain components. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The natural frequencies of plates and shells are presented, and the forced vibration analysis of FGM and laminated composite plates and shells subjected to arbitrary loading is carried out. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To validate and compare the finite element numerical solutions, the reference solutions of plates based on the Navier’s method, the series solutions of sigmoid FGM (S-FGM) plates are obtained. Results of the present theory show good agreement with the reference solutions. In addition the effect of damping is investigated on the forced vibration analysis of FGM plates and shells.  相似文献   

18.
The paper presents the finite rotations beam equations derived on use of the generalized Reissner hypothesis with a scalar parameter for the transverse extension. The beam strain and change of curvature measures are obtained from the right stretch strain, and the virtual work is given for Biot‐type stress and couple resultants. The strain energy for the first‐order isotropic elastic material is assumed in terms of the right stretch strain, and constitutive equations for the beam stress and couple resultants are derived. Two finite rotation elements are developed from the derived beam equations: a beam element with the transverse stretch and a quadrilateral element. First, the beam element with the uniformly under‐integrated tangent operator is developed. Next, the formula linking the middle‐line variables and the interface variables of the beam is introduced consistently with the generalized Reissner kinematics. Linearization of this formula is performed, and the derived tangent operator is used to convert the two‐node beam element to a four‐node quadrilateral. Both the finite elements have been tested on several numerical examples, some of highly non‐linear characteristics, and their accuracy is very good. It has been established that the quadrilateral element, which is intended for applications to multi‐layer beams, performs very well for high elemental aspect ratios, and can therefore be applied to modelling of very thin layers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient shear‐flexible three‐noded curved beam element is proposed herein. The shear flexibility is based on Timoshenko beam theory and the element has three degrees of freedom, viz., tangential displacement (u), radial displacement (w) and the section‐rotation (θ). A quartic polynomial interpolation for flexural rotation ψ is assumed a priori. Making use of the physical composition of θ in terms of ψ and u, a novel way of deriving the polynomial interpolations for u and w is presented, by solving force‐moment and moment‐shear equilibrium equations simultaneously. The field interpolation for θ is then constructed from that of ψ and u. The procedure leads to high‐order polynomial field interpolations which share some of the generalized degrees of freedom, by means of coefficients involving material and geometric properties of the element. When applied to a straight Euler–Bernoulli beam, all the coupled coefficients vanish and the formulation reduces to classical quintic‐in‐w and quadratic‐in‐u element, with u, w, and ?w/?x as degrees of freedom. The element is totally devoid of membrane and shear locking phenomena. The formulation presents an efficient utilization of the nine generalized degrees of freedom available for the polynomial interpolation of field variables for a three‐noded curved beam element. Numerical examples on static and free vibration analyses demonstrate the efficacy and locking‐free property of the element. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
A new finite element (FE) model has been developed based on higher order zigzag theory (HOZT) for the static analysis of laminated sandwich beam with soft core. In this theory, the in-plane displacement variation is considered to be cubic for both the face sheets and the core. The transverse displacement is assumed to vary quadratically within the core while it remains constant in the faces beyond the core. The proposed model satisfies the condition of transverse shear stress continuity at the layer interfaces and the zero transverse shear stress condition at the top and bottom of the beam. The nodal field variables are chosen in an efficient manner to overcome the problem of continuity requirement of the derivatives of transverse displacements. A C0 quadratic beam finite element is implemented to model the HOZT for the present analysis. Numerical examples covering different features of laminated composite and sandwich beams are presented to illustrate the accuracy of the present model. Many new results are also presented which should be useful for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号